Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
QJM ; 116(5): 345-354, 2023 May 27.
Article in English | MEDLINE | ID: mdl-36592055

ABSTRACT

BACKGROUND: Matricellular proteins comprising matrisome and adhesome are responsible for structure integrity and interactions between cells in the tumour microenvironment of breast cancer. Changes in the gene expression of matrisome and adhesome augment metastasis. Since inflammatory breast cancer (IBC) is characterized by high metastatic behaviour. Herein, we compared the gene expression profile of matrisome and adhesome in non-IBC and IBC in fresh tissue and ex vivo patient-derived explants (PDEs) and we also compared the secretory inflammatory mediators of PDEs in non-IBC and IBC to identify secretory cytokines participate in cross-talk between cells via interactions with matrisome and adhisome. METHODS: Fifty patients (31 non-IBC and 19 IBC) were enrolled in the present study. To test their validation in clinical studies, PDEs were cultured as an ex vivo model. Gene expression and cytokine array were used to identify candidate genes and cytokines contributing to metastasis in the examined fresh tissues and PDEs. Bioinformatics analysis was applied on identified differentially expressed genes using GeneMANIA and Metascape gene annotation and analysis resource to identify pathways involved in IBC metastasis. RESULTS: Normal and cancer fresh tissues and PDEs of IBC were characterized by overexpression of CDH1 and MMP14 and downregulation of CTNNA1 and TIMP1 compared with non-IBC. The secretome of IBC cancer PDEs is characterized by significantly high expression of interleukin 6 and monocyte chemoattractant protein-1 (CCL2) compared with non-IBC. CONCLUSION: Genes expressed by adhisome and matrisome play a significant role in IBC metastasis and should be considered novel target therapy.


Subject(s)
Inflammatory Breast Neoplasms , Humans , Inflammatory Breast Neoplasms/genetics , Inflammatory Breast Neoplasms/metabolism , Inflammatory Breast Neoplasms/pathology , Interleukin-6/genetics , Chemokine CCL2/genetics , Cytokines , Gene Expression , Tumor Microenvironment
2.
Vet Parasitol ; 314: 109869, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586192

ABSTRACT

The current study aimed to find a new therapeutic agent from Hirudo medicinalis for murine coccidiosis. Ion-exchange chromatography was performed to separate different fractions of HEA (hirudo extract antigens). Eight different fractions were experimentally tested against murine eimeriosis induced by Eimeria papillate. The oocysts output was counted to determine the most effective fractions. For the five most effective fraction groups, jejunal histological examination and goblet cells count as well as mRNA expression of MUC2 gene using RT-PCR were performed. The data indicated that these fractions significantly decreased the oocysts output and the number of parasite developmental stages, while the goblet cell numbers and the expression of MUC2 were increased. Effective fractions were subjected to SDS-PAGE and proteomic analysis for detection of their bioactive macromolecules. The fractions reveled only a protein at 8 kDa while the results of spectroscopy and bioinformatics identified the protein as Eglin C. The pooled fractions containing Eglin C were tested in vitro to determine its stimulation for the intestinal lymphocyte proliferation and IFN-γ together with IL-6 release in the supernatant. The results showed that higher Eglin C concentrations reduced the stimulation index of lymphocyte proliferation as well as the stimulation index of IFN-γ and IL-6 production. In conclusion, Eglin C protein can be used as a target for therapeutic treatment or as an anti-inflammatory agent for coccidiosis infection.


Subject(s)
Coccidiosis , Eimeria , Hirudo medicinalis , Poultry Diseases , Animals , Mice , Interleukin-6/pharmacology , Interleukin-6/therapeutic use , Proteomics , Coccidiosis/drug therapy , Coccidiosis/prevention & control , Coccidiosis/veterinary , Chickens , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control
3.
Vet Parasitol ; 309: 109772, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35917641

ABSTRACT

Eimeriosis is a common parasitic disease in the chicken industry. The aim of this study was to assess the protective role of Hirudo extract antigens (HEA) against murine eimeriosis induced by Eimeria papillate. The oocyst output, developmental stages, goblet cells and oxidative stress, were investigated. Immunohistochemistry was used to detect anti-apoptotic Bcl2 marker and the number of both CD4+ and CD25+ cells in jejunal tissue, while ELISA was used to quantify TGF-ß, IL-10 and IL-22 in jejunal tissue homogenate. Real-time PCR was also used to detect mRNA expression of mucin 2 (MUC2), inducible nitric oxide synthase (iNOS), IL-1ß, IFN-γ, TNF-α, IL-6, and FoxP3. The most effective dose (5 µg/mice) reduced the oocyst output by 82.95 ± 1.02% (P ˂ 0.001). Similarly, the same dose reduced the jejunal developmental stages by 66.67 ± 0.49% (P ˂ 0.001). Furthermore, HEA therapy increased the number of jejunal goblet cells by 12.8 ± 1 (P ˂ 0.001) and the expression of MUC2 by 0.83 ± 0.06 (P ˂ 0.001). In contrast, TNF-α, IFN-γ, IL-6, iNOS, and IL-1ß expression as well as apoptosis were reduced. The number of CD4+ and CD25+ in the jejunal tissue was increased (14.6 ± 1.2 (P ˂ 0.001), 6.84 ± 1 (P ˂ 0.01), respectively) after HEA therapy. The molecular analysis showed an increased expression of intestinal Foxp3 (3.2 ± 0.13 (P ˂ 0.001), while IL-22 was reduced (124 ± 10 (P ˂ 0.001)) versus an increase in TGF-ß (250 ± 17 (P ˂ 0.01)) and IL-10 (236 ± 16 (P ˂ 0.001)) after HEA treatment in comparison to the non-treated infected group. With respect to the infected group, HEA reduced lipid peroxidation (LPO) (15.7 ± 1.12 (P ˂ 0.001)) and nitric oxide (NO) (13 ± 1.3 (P ˂ 0.001)) but increased reduced glutathione (GSH) (3.7 ± 0.26 (P ˂ 0.001)). In conclusion, HEA therapy protected against intestinal tissue damage by activation of CD4+CD25+Foxp3 cells which showed anti-inflammatory action. Hence, HEA can be recommended as a therapeutic treatment for eimeriosis.


Subject(s)
Coccidiosis , Hirudo medicinalis , Rodent Diseases , Animals , Coccidiosis/drug therapy , Coccidiosis/metabolism , Coccidiosis/veterinary , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/therapeutic use , Hirudo medicinalis/metabolism , Interleukin-10/metabolism , Interleukin-6/metabolism , Mice , T-Lymphocytes , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta , Tumor Necrosis Factor-alpha/metabolism
4.
Curr Issues Mol Biol ; 44(6): 2730-2744, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35735628

ABSTRACT

Inflammatory breast cancer (IBC) is an aggressive phenotype with a high recurrence and low survival rate. Approximately 90% of local breast cancer recurrences occur adjacent to the same quadrant as the initial cancer, implying that tumor recurrence may be caused by residual cancer cells and/or quiescent cancer stem cells (CSCs) in the tumor. We hypothesized that wound fluid (WF) collected after modified radical mastectomy (MRM) may activate cancer cells and CSCs, promoting epithelial mesenchymal transition (EMT) and invasion. Therefore, we characterized the cytokinome of WF drained from post-MRM cavities of non-IBC and IBC patients. The WF of IBC patients showed a significantly higher expression of various cytokines than in non-IBC patients. In vitro cell culture models of non-IBC and IBC cell lines were grown in media conditioned with and/without WF for 48 h. Afterwards, we assessed cell viability, the expression of CSCs and EMT-specific genes, and tumor invasion. Genes associated with CSCs properties and EMT markers were regulated in cells seeded in media conditioned by WF. IBC-WF exhibited a greater potential for inducing IBC cell invasion than non-IBC cells. The present study demonstrates the role of the post-surgical tumor cavity in IBC recurrence and metastasis.

5.
Infect Drug Resist ; 14: 1169-1184, 2021.
Article in English | MEDLINE | ID: mdl-33790587

ABSTRACT

In late 2019, a new virulent coronavirus (CoV) emerged in Wuhan, China and was named as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This virus spread rapidly, causing the coronavirus disease-2019 (COVID-19) pandemic. Bacillus Calmette-Guérin (BCG) is a live attenuated tuberculosis (TB) vaccine, associated with induction of non-specific cross-protection against unrelated infections. This protection is a memory-like response in innate immune cells (trained immunity), which is caused by epigenetic reprogramming via histone modification in the regulatory elements of specific genes in monocytes. COVID-19 related epidemiological studies showed an inverse relationship between national BCG vaccination policies and COVID-19 incidence and death, suggesting that BCG may induce trained immunity that could confer some protection against SARS-CoV-2. As this pandemic has put most of Earth's population under quarantine, repurposing of the old, well-characterized BCG may ensure some protection against COVID-19. This review focuses on BCG-related cross-protection and acquisition of trained immunity, as well as the correlation between BCG vaccination and COVID-19 incidence and mortality.

6.
Exp Parasitol ; 191: 73-81, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29964018

ABSTRACT

This study aimed to induce protective immunity against infection with Sarcocystis muris in experimental mice using ß-irradiated sporocysts. Mice were vaccinated with 50 sporocysts of S. muris which were exposed to 1.84 µSv ß-irradiation for 2, 4 and 8 h. After challenge infection, different samples were taken for evaluation. Serum and intestinal wash were assayed for IFN-γ and IgA, respectively. Mesenteric lymph nodes (MLNs) and spleen were investigated for CD4+ and CD8+ T cells using immunohistochemistry. For liver, the morphological changes in parasitic stages and the count of infiltrated CD8+ T, NK1.1+ and FasL+ cells were also investigated. Real time (RT) - PCR was used for detection of liver MHC I, CD1d, IFN-γ, perforin and FasL as well as the parasite 18S ribosomal(r) RNA in liver and muscle tissues. Alterations of liver parasitic stages as well as a decrease in the infection with the parasite in both of liver and muscle tissues were dependent on radiation exposure time. An investigation for the mechanism of immunoprotection showed an increase in liver NK1.1+ & FasL+ cells, serum IFN-γ and intestinal IgA, while CD4+ and CD8+ T showed a remarkable increase in MLNs and spleen. FasL expression increased in the liver dependently on radiation exposure time, while perforin, MHC I and CD1d were not. ß-irradiated sporocysts with 1.84 µSv for 8 h s could induce the highest protection against infection with Sarcocystis. This could be largely relied on the increased infiltration of NK cells and associated higher expression of FasL in the liver.


Subject(s)
Sarcocystis/immunology , Sarcocystis/radiation effects , Sarcocystosis/prevention & control , Vaccination/methods , Animals , Beta Particles , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cats , Disease Models, Animal , Fas Ligand Protein/metabolism , Immunoglobulin A/analysis , Interferon-gamma/analysis , Interferon-gamma/blood , Interferon-gamma/genetics , Intestines/immunology , Killer Cells, Natural/cytology , Killer Cells, Natural/parasitology , Liver/cytology , Liver/immunology , Liver/parasitology , Lymph Nodes/cytology , Lymph Nodes/immunology , Mesentery , Mice , Muscle, Skeletal/parasitology , Oocysts/genetics , Oocysts/immunology , Oocysts/radiation effects , RNA, Messenger/metabolism , Sarcocystis/genetics , Sarcocystosis/immunology , Spleen/cytology , Spleen/immunology
7.
Tumour Biol ; 39(7): 1010428317713393, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28675120

ABSTRACT

Interleukin-10 is involved in carcinogenesis by supporting tumor escape from the immune response. The aim of this study was to assess the single nucleotide polymorphisms, -1082A/G, -819T/C and -592A/C, in interleukin-10 gene promoter in inflammatory breast cancer compared to non-inflammatory breast cancer and association of these polymorphisms with interleukin-10 gene expression. We enrolled 105 breast cancer tissue (72 non-inflammatory breast cancer and 33 inflammatory breast cancer) patients and we determined the three studied single nucleotide polymorphisms in all samples by polymerase chain reaction restriction fragment length polymorphism and investigated their association with the disease and with various prognostic factors. In addition, we assessed the expression of interleukin-10 gene by real-time quantitative reverse transcription polymerase chain reaction and the correlation between studied single nucleotide polymorphisms and interleukin-10 messenger RNA expression. We found co-dominant effect as the best inheritance model (in the three studied single nucleotide polymorphisms in non-inflammatory breast cancer and inflammatory breast cancer samples), and we didn't identify any association between single nucleotide polymorphisms genotypes and breast cancer prognostic factors. However, GCC haplotype was found highly associated with inflammatory breast cancer risk (p < 0.001, odds ratio = 43.05). Moreover, the expression of interleukin-10 messenger RNA was significantly higher (p < 0.001) by 5.28-fold and 8.95-fold than non-inflammatory breast cancer and healthy control, respectively, where GCC haplotype significantly increased interleukin-10 gene expression (r = 0.9, p < 0.001).


Subject(s)
Carcinogenesis/genetics , Carcinoma/genetics , Inflammatory Breast Neoplasms/genetics , Interleukin-10/genetics , Adult , Aged , Carcinoma/pathology , Female , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genotype , Haplotypes/genetics , Humans , Inflammatory Breast Neoplasms/pathology , Interleukin-10/biosynthesis , Middle Aged , Polymorphism, Single Nucleotide , Prognosis , Promoter Regions, Genetic , RNA, Messenger/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...