Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Biol Lett ; 29(1): 33, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448800

ABSTRACT

Gut microbiota regulates various aspects of human physiology by producing metabolites, metabolizing enzymes, and toxins. Many studies have linked microbiota with human health and altered microbiome configurations with the occurrence of several diseases, including cancer. Accumulating evidence suggests that the microbiome can influence the initiation and progression of several cancers. Moreover, some microbiotas of the gut and oral cavity have been reported to infect tumors, initiate metastasis, and promote the spread of cancer to distant organs, thereby influencing the clinical outcome of cancer patients. The gut microbiome has recently been reported to interact with environmental factors such as diet and exposure to environmental toxicants. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) induces a shift in the gut microbiome metabolic pathways, favoring a proinflammatory microenvironment. In addition, other studies have also correlated cancer incidence with exposure to PAHs. PAHs are known to induce organ carcinogenesis through activating a ligand-activated transcriptional factor termed the aryl hydrocarbon receptor (AhR), which metabolizes PAHs to highly reactive carcinogenic intermediates. However, the crosstalk between AhR and the microbiome in mediating carcinogenesis is poorly reviewed. This review aims to discuss the role of exposure to environmental pollutants and activation of AhR on microbiome-associated cancer progression and explore the underlying molecular mechanisms involved in cancer development.


Subject(s)
Environmental Pollutants , Microbiota , Neoplasms , Humans , Receptors, Aryl Hydrocarbon , Carcinogenesis , Tumor Microenvironment
2.
Chem Res Toxicol ; 36(3): 552-560, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36877625

ABSTRACT

Patients with sepsis are at a high risk of morbidity and mortality due to multiple organ injuries caused by pathological inflammation. Although sepsis is accompanied by multiple organ injuries, acute renal injury is a significant contributor to sepsis morbidity and mortality. Thus, dampening inflammation-induced renal injury may limit severe consequences of sepsis. As several studies have suggested that 6-formylindolo(3,2-b)carbazole (FICZ) is beneficial for treating various inflammatory diseases, we aimed to examine the potential protective effect of FICZ on the acute endotoxin-induced sepsis model of kidney injury. To test this, male C57Bl/6N mice were injected with FICZ (0.2 mg/kg) or vehicle 1 h prior to an injection of either lipopolysaccharides (LPS) (10 mg/kg), to induce sepsis, or phosphate-buffered saline for 24 h. Thereafter, gene expression of kidney injury and pro-inflammatory markers, circulating cytokines and chemokines, and kidney morphology were assessed. Our results show that FICZ reduced LPS-induced acute injury in kidneys from LPS-injected mice. Furthermore, we found that FICZ dampens both renal and systemic inflammation in our sepsis model. Mechanistically, our data indicated that FICZ significantly upregulates NAD(P)H quinone oxidoreductase 1 and heme oxygenase 1 via aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the kidneys to lessen inflammation and improve septic acute kidney injury. Overall, the data of our study show that FICZ possesses a beneficial reno-protective effect against sepsis-induced renal injury via dual activation of AhR/Nrf2.


Subject(s)
Acute Kidney Injury , Sepsis , Animals , Male , Mice , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Carbazoles/pharmacology , Endotoxins , Inflammation/chemically induced , Inflammation/drug therapy , Kidney/metabolism , Lipopolysaccharides , NF-E2-Related Factor 2 , Receptors, Aryl Hydrocarbon/metabolism , Sepsis/chemically induced , Sepsis/drug therapy
3.
Cell Mol Biol Lett ; 27(1): 103, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36418969

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor that mediates the toxicities of several environmental pollutants. Decades of research have been carried out to understand the role of AhR as a novel mechanism for disease development. Its involvement in the pathogenesis of cancer, cardiovascular diseases, rheumatoid arthritis, and systemic lupus erythematosus have long been known. One of the current hot research topics is investigating the role of AhR activation by environmental pollutants on glucose homeostasis and insulin secretion, and hence the pathogenesis of diabetes mellitus. To date, epidemiological studies have suggested that persistent exposure to environmental contaminants such as dioxins, with subsequent AhR activation increases the risk of specific comorbidities such as obesity and diabetes. The importance of AhR signaling in various molecular pathways highlights that the role of this receptor is far beyond just xenobiotic metabolism. The present review aims at providing significant insight into the physiological and pathological role of AhR and its regulated enzymes, such as cytochrome P450 1A1 (CYP1A1) and CYP1B1 in both types of diabetes. It also provides a comprehensive summary of the current findings of recent research studies investigating the role of the AhR/CYP1A1 pathway in insulin secretion and glucose hemostasis in the pancreas, liver, and adipose tissues. This review further highlights the molecular mechanisms involved, such as gluconeogenesis, hypoxia-inducible factor (HIF), oxidative stress, and inflammation.


Subject(s)
Diabetes Mellitus , Environmental Pollutants , Insulin Resistance , Humans , Receptors, Aryl Hydrocarbon/genetics , Cytochrome P-450 CYP1A1 , Glucose , Homeostasis
4.
Life Sci ; 286: 120035, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34637799

ABSTRACT

Endocannabinoid system (ECS) is known for its modulatory role in numerous physiological processes in the body. Endocannabinoids (eCBs) are endogenous lipid molecules which function both centrally and peripherally. The ECS is best studied in the central nervous system (CNS), immune system as well as in the metabolic system. The role of ECS in male reproductive system is emerging and the presence of a complete enzymatic machinery to synthesize and metabolize eCBs has been demonstrated in male reproductive tract. Endocannabinoid concentrations and alterations in their levels have been reported to affect the functioning of spermatozoa. A dysfunctional ECS has also been linked to the development of prostate cancer, the leading cause of cancer related mortality among male population. This review is an attempt to provide an insight into the significant role of endocannabinoids in male reproduction and further summarize recent findings that demonstrate the manner in which the endocannabinoid system impacts male sexual behavior and fertility.


Subject(s)
Endocannabinoids/metabolism , Endocannabinoids/physiology , Genitalia, Male/metabolism , Animals , Cannabinoids/metabolism , Fertility/drug effects , Humans , Immune System/metabolism , Male , Prostate/pathology , Receptors, Cannabinoid/physiology , Reproduction/drug effects , Reproduction/physiology , Spermatozoa/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...