Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4100, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773091

ABSTRACT

In most models of neuronal plasticity and memory, dopamine is thought to promote the long-term maintenance of Long-Term Potentiation (LTP) underlying memory processes, but not the initiation of plasticity or new information storage. Here, we used optogenetic manipulation of midbrain dopamine neurons in male DAT::Cre mice, and discovered that stimulating the Schaffer collaterals - the glutamatergic axons connecting CA3 and CA1 regions - of the dorsal hippocampus concomitantly with midbrain dopamine terminals within a 200 millisecond time-window triggers LTP at glutamatergic synapses. Moreover, we showed that the stimulation of this dopaminergic pathway facilitates contextual learning in awake behaving mice, while its inhibition hinders it. Thus, activation of midbrain dopamine can operate as a teaching signal that triggers NeoHebbian LTP and promotes supervised learning.


Subject(s)
Dopamine , Dopaminergic Neurons , Hippocampus , Learning , Long-Term Potentiation , Optogenetics , Ventral Tegmental Area , Animals , Long-Term Potentiation/physiology , Ventral Tegmental Area/physiology , Male , Dopamine/metabolism , Mice , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Hippocampus/physiology , Hippocampus/metabolism , Learning/physiology , Mice, Transgenic , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology , Synapses/physiology , Synapses/metabolism , Mice, Inbred C57BL , Memory/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...