Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Thyroid ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984927

ABSTRACT

BACKGROUND: The highly selective RET inhibitor selpercatinib showed high efficacy and favorable toxicity profile in treating patients with RET-altered thyroid cancer (TC). Erectile dysfunction (ED) is a common adverse event observed in patients with advanced cancers. This study aims to evaluate the occurrence of ED in TC patients treated with selpercatinib. METHODS: In a multi-center retrospective cohort study, we investigated the prevalence of ED in 25 male patients treated with selpercatinib for advanced TC. The management of ED was also examined. RESULTS: 18/25 (78.3%) patients presented ED after starting selpercatinib treatment. However, only 2/18 (11.1%) spontaneously reported ED, while 16/18 (88.9%) reported ED only after specific questioning. Ten patients started treatment with phosphodiesterase-5 inhibitors (PDE-5i) with a significant improvement of ED. CONCLUSIONS: In this study, we observed that ED was not infrequently reported among men treated with selpercatinib for RET-altered TC. We believe that clinicians should actively inquire about ED in such patients at it may be underreported but may be amenable to treatment.

2.
Immunotherapy ; 13(2): 125-141, 2021 02.
Article in English | MEDLINE | ID: mdl-33172323

ABSTRACT

Aim: We report results of a first-in-human study of pasotuxizumab, a PSMA bispecific T-cell engager (BiTE®) immune therapy mediating T-cell killing of tumor cells in patients with advanced castration-resistant prostate cancer. Patients & methods: We assessed once-daily subcutaneous (SC) pasotuxizumab. All SC patients developed antidrug antibodies; therefore, continuous intravenous (cIV) infusion was assessed. Results: A total of 47 patients received pasotuxizumab (SC: n = 31, 0.5-172 µg/d; cIV: n = 16, 5-80 µg/d). The SC maximum tolerated dose was 172.0 µg/d. A sponsor change stopped the cIV cohort early; maximum tolerated dose was not determined. PSA responders occurred (>50% PSA decline: SC, n = 9; cIV, n = 3), including two long-term responders. Conclusion: Data support pasotuxizumab safety in advanced castration-resistant prostate cancer and represent evidence of BiTE monotherapy efficacy in solid tumors. Clinical trial registration: NCT01723475 (ClinicalTrials.gov).


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents, Immunological , Prostatic Neoplasms, Castration-Resistant , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacokinetics , Antibodies, Bispecific/therapeutic use , Antigens, Surface/immunology , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/blood , CD3 Complex/immunology , Glutamate Carboxypeptidase II/immunology , Immunotherapy , Infusions, Intravenous , Injections, Subcutaneous , Maximum Tolerated Dose , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/therapy , Treatment Outcome
3.
Lancet Oncol ; 20(10): 1454-1466, 2019 10.
Article in English | MEDLINE | ID: mdl-31405822

ABSTRACT

BACKGROUND: The clinical activity of fibroblast growth factor receptor (FGFR) inhibitors seems restricted to cancers harbouring rare FGFR genetic aberrations. In preclinical studies, high tumour FGFR mRNA expression predicted response to rogaratinib, an oral pan-FGFR inhibitor. We aimed to assess the safety, maximum tolerated dose, recommended phase 2 dose, pharmacokinetics, and preliminary clinical activity of rogaratinib. METHODS: We did a phase 1 dose-escalation and dose-expansion study of rogaratinib in adults with advanced cancers at 22 sites in Germany, Switzerland, South Korea, Singapore, Spain, and France. Eligible patients were aged 18 years or older, and were ineligible for standard therapy, with an Eastern Cooperative Oncology Group performance status of 0-2, a life expectancy of at least 3 months, and at least one measurable or evaluable lesion according to Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. During dose escalation, rogaratinib was administered orally twice daily at 50-800 mg in continuous 21-day cycles using a model-based dose-response analysis (continuous reassessment method). In the dose-expansion phase, all patients provided an archival formalin-fixed paraffin-embedded (FFPE) tumour biopsy or consented to a new biopsy at screening for the analysis of FGFR1-3 mRNA expression. In the dose-expansion phase, rogaratinib was given at the recommended dose for expansion to patients in four cohorts: urothelial carcinoma, head and neck squamous-cell cancer (HNSCC), non-small-cell lung cancer (NSCLC), and other solid tumour types. Primary endpoints were safety and tolerability, determination of maximum tolerated dose including dose-limiting toxicities and determination of recommended phase 2 dose, and pharmacokinetics of rogaratinib. Safety analyses were reported in all patients who received at least one dose of rogaratinib. Patients who completed cycle 1 or discontinued during cycle 1 due to an adverse event or dose-limiting toxicity were included in the evaluation of recommended phase 2 dose. Efficacy analyses were reported for all patients who received at least one dose of study drug and who had available post-baseline efficacy data. This ongoing study is registered with ClinicalTrials.gov, number NCT01976741, and is fully recruited. FINDINGS: Between Dec 30, 2013, and July 5, 2017, 866 patients were screened for FGFR mRNA expression, of whom 126 patients were treated (23 FGFR mRNA-unselected patients in the dose-escalation phase and 103 patients with FGFR mRNA-overexpressing tumours [52 patients with urothelial carcinoma, eight patients with HNSCC, 20 patients with NSCLC, and 23 patients with other tumour types] in the dose-expansion phase). No dose-limiting toxicities were reported and the maximum tolerated dose was not reached; 800 mg twice daily was established as the recommended phase 2 dose and was selected for the dose-expansion phase. The most common adverse events of any grade were hyperphosphataemia (in 77 [61%] of 126 patients), diarrhoea (in 65 [52%]), and decreased appetite (in 48 [38%]); and the most common grade 3-4 adverse events were fatigue (in 11 [9%] of 126 patients) and asymptomatic increased lipase (in 10 [8%]). Serious treatment-related adverse events were reported in five patients (decreased appetite and diarrhoea in one patient with urothelial carcinoma, and acute kidney injury [NSCLC], hypoglycaemia [other solid tumours], retinopathy [urothelial carcinoma], and vomiting [urothelial carcinoma] in one patient each); no treatment-related deaths occurred. Median follow-up after cessation of treatment was 32 days (IQR 25-36 days). In the expansion cohorts, 15 (15%; 95% CI 8·6-23·5) out of 100 evaluable patients achieved an objective response, with responses recorded in all four expansion cohorts (12 in the urothelial carcinoma cohort and one in each of the other three cohorts), and in ten (67%) of 15 FGFR mRNA-overexpressing tumours without apparent FGFR genetic aberration. INTERPRETATION: Rogaratinib was well tolerated and clinically active against several types of cancer. Selection by FGFR mRNA expression could be a useful additional biomarker to identify a broader patient population who could be eligible for FGFR inhibitor treatment. FUNDING: Bayer AG.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Transitional Cell/drug therapy , Lung Neoplasms/drug therapy , Piperazines/administration & dosage , Pyrroles/administration & dosage , Receptors, Fibroblast Growth Factor/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Thiophenes/administration & dosage , Acute Kidney Injury/chemically induced , Aged , Anorexia/chemically induced , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Transitional Cell/genetics , Diarrhea/chemically induced , Fatigue/chemically induced , Female , Humans , Hyperphosphatemia/chemically induced , Hypoglycemia/chemically induced , Lung Neoplasms/genetics , Male , Maximum Tolerated Dose , Middle Aged , Piperazines/adverse effects , Piperazines/pharmacokinetics , Pyrroles/adverse effects , Pyrroles/pharmacokinetics , RNA, Messenger/metabolism , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Squamous Cell Carcinoma of Head and Neck/genetics , Thiophenes/adverse effects , Thiophenes/pharmacokinetics , Vomiting/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...