Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 78(3): 1206-1212, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34837476

ABSTRACT

BACKGROUND: Trifluralin is widely used in Australia as one of the important pre-emergence herbicides to control annual ryegrass (Lolium rigidum Gaud.) populations. Trifluralin resistance evolution and mechanisms have been identified in some ryegrass populations. RESULTS: In this study, 21 putative resistant field survey populations from Western Australian were screened with trifluralin, and 90% (19 of 21) contained individuals surviving 480 g ha-1 trifluralin treatment. Twelve populations contained individuals possessing the known α-tubulin resistance mutations at Val-202, Thr-239 and Arg-243 in TUA4 (alpha-tubulin 4 n), plus multiple potential resistance mutations in TUA4 pending genetic confirmation. Three populations had only individuals carrying newly identified (but uncharacterized) mutations in TUA3/TUA4. Radioactive work found that six populations evolved metabolic resistance to trifluralin, and at least four of them also possessed the known and/or putative target-site mutations. CONCLUSION: These results confirm that a high incidence of resistance to the dinitroaniline herbicide (trifluralin) is present, and target-site tubulin mutations make a major contribution to resistance in these annual ryegrass populations. Co-evolution of both target-site and non-target-site resistance to per-emergence herbicides warrants diverse management tactics.


Subject(s)
Herbicides , Lolium , Australia , Herbicide Resistance/genetics , Herbicides/pharmacology , Humans , Lolium/genetics , Trifluralin , Western Australia
2.
Front Plant Sci ; 12: 634018, 2021.
Article in English | MEDLINE | ID: mdl-33841462

ABSTRACT

Dinitroanilines are microtubule inhibitors, targeting tubulin proteins in plants and protists. Dinitroaniline herbicides, such as trifluralin, pendimethalin and oryzalin, have been used as pre-emergence herbicides for weed control for decades. With widespread resistance to post-emergence herbicides in weeds, the use of pre-emergence herbicides such as dinitroanilines has increased, in part, due to relatively slow evolution of resistance in weeds to these herbicides. Target-site resistance (TSR) to dinitroaniline herbicides due to point mutations in α-tubulin genes has been confirmed in a few weedy plant species (e.g., Eleusine indica, Setaria viridis, and recently in Lolium rigidum). Of particular interest is the resistance mutation Arg-243-Met identified from dinitroaniline-resistant L. rigidum that causes helical growth when plants are homozygous for the mutation. The recessive nature of the TSR, plus possible fitness cost for some resistance mutations, likely slows resistance evolution. Furthermore, non-target-site resistance (NTSR) to dinitroanilines has been rarely reported and only confirmed in Lolium rigidum due to enhanced herbicide metabolism (metabolic resistance). A cytochrome P450 gene (CYP81A10) has been recently identified in L. rigidum that confers resistance to trifluralin. Moreover, TSR and NTSR have been shown to co-exist in the same weedy species, population, and plant. The implication of knowledge and information on TSR and NTSR in management of dinitroaniline resistance is discussed.

3.
Pest Manag Sci ; 76(2): 645-652, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31329340

ABSTRACT

BACKGROUND: A Lolium rigidum population collected from Western Australia was previously reported as highly resistant to dinitroaniline herbicides mainly due to a Val-202-Phe substitution in the target site α-tubulin protein. To further determine the contribution of the 202 mutation to resistance, two sub-populations, respectively comprising the 202 mutant and wild-type (WT) individuals, were isolated from within the same resistant population and subject to dinitroaniline herbicide doses. A rice transgenic study was conducted to demonstrate whether the amino acid substitution at the 202 residue confers resistance. In addition, as indicated in the phenotyping and genotyping study, non-target enhanced trifluralin metabolism was further examined in the same population. RESULTS: The 202 mutants were more resistant than the wild-type plants. Rice calli transformed with the L. rigidum mutant α-tubulin gene (Val-202-Phe) were more resistant to dinitroaniline herbicides relative to calli transformed with the wild-type gene. Also, enhanced trifluralin metabolism was detected in the 202 mutants in comparison to the susceptible seedlings. CONLCUSION: Both target-site Val-202-Phe α-tubulin mutation and non-target-site enhanced trifluralin metabolism co-exist in this dinitroaniline-resistant L. rigidum population. © 2019 Society of Chemical Industry.


Subject(s)
Mutation , Herbicide Resistance , Herbicides , Lolium , Tubulin , Western Australia
4.
Plant Sci ; 283: 189-194, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31128688

ABSTRACT

The increasing number of weedy species resistant to dinitroaniline herbicides warrants studies on the evolutionary factors contributing to resistance evolution, including genetic inheritance of resistance traits. In this study, we investigated the genetic control of trifluralin resistance in a well-characterised Lolium rigidum Gaud. population from Western Australia. This population was purified to contain plants homozygous for the Val-202-Phe α-tubulin mutation, and used as the resistant (R) parents and crossed with susceptible (S) parents to produce eight reciprocal F1 families. Trifluralin dose response curves of the eight F1 families indicate that trifluralin resistance in this population is inherited as an incomplete recessive nuclear trait. The F1 plants were crossed within each families to establish eight pseudo-F2 (ψ-F2) families. Segregation ratio of resistance and susceptibility in ψ-F2 families were determined using the discriminating trifluralin rates of 120 and 480 g a.i. ha-1. At 480 g a.i. ha-1 trifluralin, the segregation ratio in almost all ψ-F2 families (except one) was fit to 1:3 (resistance: susceptibility) one recessive gene control model. However, at 120 g a.i. ha-1 trifluralin, the segregation ratios in half of the families did not fit this model, indicating involvement of one or more genes in resistance at the lower rate. These results showed complexity of genetic inheritance of trifluralin resistance in this L. rigidum population possessing the Val-202-Phe α-tubulin mutation.


Subject(s)
Herbicide Resistance/genetics , Lolium/genetics , Trifluralin , Dose-Response Relationship, Drug , Genotyping Techniques , Herbicides , Lolium/drug effects
5.
ACS Appl Mater Interfaces ; 5(5): 1818-26, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23421455

ABSTRACT

Agrochemical spray formulations applied to plants are often mixed with surfactants that facilitate delivery of the active ingredient. However, surfactants cause phytotoxicity and off-target effects in the environment. We propose the use of nanostructured liquid crystalline particles (NLCP) as an alternative to surfactant-based agrochemical delivery. For this, we have compared the application of commercial surfactants, di (2-ethylhexyl) sulfosuccinate and alkyl dimethyl betaine, with NLCP made from phytantriol, at concentrations of 0.1%, 1% and 5% on the adaxial surface of leaves of four plant species Ttriticum aestivum (wheat), Zea mays (maize), Lupinus angustifolius (lupin), and Arabidopsis thaliana. In comparison with the application of surfactants there was less phytotoxicity on leaves of each species following treatment with NLCP. Following treatment of leaves with NLCP analysis of cuticular wax micromorphology revealed less wax solubilization in the monocot species. The results clearly show that there are advantages in the use of NLCP rather than surfactants for agrochemical delivery.


Subject(s)
Drug Delivery Systems/methods , Liquid Crystals/chemistry , Agrochemicals/chemistry , Agrochemicals/pharmacology , Arabidopsis/drug effects , Chemistry, Pharmaceutical , Drug Delivery Systems/instrumentation , Lupinus/drug effects , Nanostructures/chemistry , Plant Leaves/drug effects , Triticum/drug effects , Zea mays/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...