Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Mater Au ; 3(6): 727-733, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38089658

ABSTRACT

Silicon (Si)-based integrated photonics is considered to play a pivotal role in multiple emerging technologies, including telecommunications, quantum computing, and lab-chip systems. Diverse functionalities are either implemented on the wafer surface ("on-chip") or recently within the wafer ("in-chip") using laser lithography. However, the emerging depth degree of freedom has been exploited only for single-level devices in Si. Thus, monolithic and multilevel discrete functionality is missing within the bulk. Here, we report the creation of multilevel, high-efficiency diffraction gratings in Si using three-dimensional (3D) nonlinear laser lithography. To boost device performance within a given volume, we introduce the concept of effective field enhancement at half the Talbot distance, which exploits self-imaging onto discrete levels over an optical lattice. The novel approach enables multilevel gratings in Si with a record efficiency of 53%, measured at 1550 nm. Furthermore, we predict a diffraction efficiency approaching 100%, simply by increasing the number of levels. Such volumetric Si-photonic devices represent a significant advance toward 3D-integrated monolithic photonic chips.

2.
Sci Rep ; 12(1): 4132, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260715

ABSTRACT

This paper presents a deep learning-driven portable, accurate, low-cost, and easy-to-use device to perform Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) to facilitate rapid detection of COVID-19. The 3D-printed device-powered using only a 5 Volt AC-DC adapter-can perform 16 simultaneous RT-LAMP reactions and can be used multiple times. Moreover, the experimental protocol is devised to obviate the need for separate, expensive equipment for RNA extraction in addition to eliminating sample evaporation. The entire process from sample preparation to the qualitative assessment of the LAMP amplification takes only 45 min (10 min for pre-heating and 35 min for RT-LAMP reactions). The completion of the amplification reaction yields a fuchsia color for the negative samples and either a yellow or orange color for the positive samples, based on a pH indicator dye. The device is coupled with a novel deep learning system that automatically analyzes the amplification results and pays attention to the pH indicator dye to screen the COVID-19 subjects. The proposed device has been rigorously tested on 250 RT-LAMP clinical samples, where it achieved an overall specificity and sensitivity of 0.9666 and 0.9722, respectively with a recall of 0.9892 for Ct < 30. Also, the proposed system can be widely used as an accurate, sensitive, rapid, and portable tool to detect COVID-19 in settings where access to a lab is difficult, or the results are urgently required.


Subject(s)
COVID-19/diagnosis , Deep Learning , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , Area Under Curve , COVID-19 Testing , Coloring Agents/chemistry , Humans , Molecular Diagnostic Techniques/instrumentation , Nasopharynx/virology , Nucleic Acid Amplification Techniques/instrumentation , Point-of-Care Systems , Printing, Three-Dimensional , RNA, Viral/analysis , RNA, Viral/metabolism , ROC Curve , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
3.
Sci Rep ; 10(1): 19541, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33177566

ABSTRACT

This work provides useful insights into the development of HfO2-based memristive systems with a p-type silicon bottom electrode that are compatible with the complementary metal-oxide-semiconductor technology. The results obtained reveal the importance of the top electrode selection to achieve unique device characteristics. The Ag/HfO2/Si devices have exhibited a larger memory window and self-compliance characteristics. On the other hand, the Au/HfO2/Si devices have displayed substantial cycle-to-cycle variation in the ON-state conductance. These device characteristics can be used as an indicator for the design of resistive-switching devices in various scenes such as, memory, security, and sensing. The current-voltage (I-V) characteristics of Ag/HfO2/Si and Au/HfO2/Si devices under positive and negative bias conditions have provided valuable information on the ON and OFF states of the devices and the underlying resistive switching mechanisms. Repeatable, low-power, and forming-free bipolar resistive switching is obtained with both device structures, with the Au/HfO2/Si devices displaying a poorer device-to-device reproducibility. Furthermore, the Au/HfO2/Si devices have exhibited N-type negative differential resistance (NDR), suggesting Joule-heating activated migration of oxygen vacancies to be responsible for the SET process in the unstable unipolar mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...