Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nat Rev Clin Oncol ; 21(7): 489-500, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38760500

ABSTRACT

mRNA vaccines have been revolutionary in terms of their rapid development and prevention of SARS-CoV-2 infections during the COVID-19 pandemic, and this technology has considerable potential for application to the treatment of cancer. Compared with traditional cancer vaccines based on proteins or peptides, mRNA vaccines reconcile the needs for both personalization and commercialization in a manner that is unique to each patient but not beholden to their HLA haplotype. A further advantage of mRNA vaccines is the availability of engineering strategies to improve their stability while retaining immunogenicity, enabling the induction of complementary innate and adaptive immune responses. Thus far, no mRNA-based cancer vaccines have received regulatory approval, although several phase I-II trials have yielded promising results, including in historically poorly immunogenic tumours. Furthermore, many early phase trials testing a wide range of vaccine designs are currently ongoing. In this Review, we describe the advantages of cancer mRNA vaccines and advances in clinical trials using both cell-based and nanoparticle-based delivery methods, with discussions of future combinations and iterations that might optimize the activity of these agents.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , mRNA Vaccines , Humans , Cancer Vaccines/therapeutic use , Cancer Vaccines/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/prevention & control , Neoplasms/genetics , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , RNA, Messenger/therapeutic use , RNA, Messenger/genetics , RNA, Messenger/immunology , Clinical Trials as Topic
2.
Mol Ther Methods Clin Dev ; 32(1): 101192, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38327807

ABSTRACT

The COVID-19 pandemic has caused about seven million deaths worldwide. Preventative vaccines have been developed including Spike gp mRNA-based vaccines that provide protection to immunocompetent patients. However, patients with primary immunodeficiencies, patients with cancer, or hematopoietic stem cell transplant recipients are not able to mount robust immune responses against current vaccine approaches. We propose to target structural SARS-CoV-2 antigens (i.e., Spike gp, Membrane, Nucleocapsid, and Envelope) using circulating human antigen-presenting cells electroporated with full length SARS-CoV-2 structural protein-encoding mRNAs to activate and expand specific T cells. Based on the Th1-type cytokine and cytolytic enzyme secretion upon antigen rechallenge, we were able to generate SARS-CoV-2 specific T cells in up to 70% of unexposed unvaccinated healthy donors (HDs) after 3 subsequent stimulations and in 100% of recovered patients (RPs) after 2 stimulations. By means of SARS-CoV-2 specific TCRß repertoire analysis, T cells specific to Spike gp-derived hypomutated regions were identified in HDs and RPs despite viral genomic evolution. Hence, we demonstrated that SARS-CoV-2 mRNA-loaded antigen-presenting cells are effective activating and expanding COVID19-specific T cells. This approach represents an alternative to patients who are not able to mount adaptive immune responses to current COVID-19 vaccines with potential protection across new variants that have conserved genetic regions.

3.
J Hematol Oncol ; 17(1): 4, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191498

ABSTRACT

Myelodysplastic neoplasms (MDS) define clonal hematopoietic malignancies characterized by heterogeneous mutational and clinical spectra typically seen in the elderly. Curative treatment entails allogeneic hematopoietic stem cell transplant, which is often not a feasible option due to older age and significant comorbidities. Immunotherapy has the cytotoxic capacity to elicit tumor-specific killing with long-term immunological memory. While a number of platforms have emerged, therapeutic vaccination presents as an appealing strategy for MDS given its promising safety profile and amenability for commercialization. Several preclinical and clinical trials have investigated the efficacy of vaccines in MDS; these include peptide vaccines targeting tumor antigens, whole cell-based vaccines and dendritic cell-based vaccines. These therapeutic vaccines have shown acceptable safety profiles, but consistent clinical responses remain elusive despite robust immunological reactions. Combining vaccines with immunotherapeutic agents holds promise and requires further investigation. Herein, we highlight therapeutic vaccine trials while reviewing challenges and future directions of successful vaccination strategies in MDS.


Subject(s)
Hematologic Neoplasms , Myelodysplastic Syndromes , Vaccines , Aged , Humans , Myelodysplastic Syndromes/therapy , Immunotherapy , Vaccination
4.
Acta Biomater ; 172: 466-479, 2023 12.
Article in English | MEDLINE | ID: mdl-37788737

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.


Subject(s)
Bone Neoplasms , Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Antigens, Neoplasm , Neoplasms/metabolism , Bone Neoplasms/metabolism , Cell Communication , Tumor Microenvironment
6.
bioRxiv ; 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36865164

ABSTRACT

Cancer immunotherapy offers lifesaving treatments for cancers, but the lack of reliable preclinical models that could enable the mechanistic studies of tumor-immune interactions hampers the identification of new therapeutic strategies. We hypothesized 3D confined microchannels, formed by interstitial space between bio-conjugated liquid-like solids (LLS), enable CAR T dynamic locomotion within an immunosuppressive TME to carry out anti-tumor function. Murine CD70-specific CAR T cells cocultured with the CD70-expressing glioblastoma and osteosarcoma demonstrated efficient trafficking, infiltration, and killing of cancer cells. The anti-tumor activity was clearly captured via longterm in situ imaging and supported by upregulation of cytokines and chemokines including IFNg, CXCL9, CXCL10, CCL2, CCL3, and CCL4. Interestingly, target cancer cells, upon an immune attack, initiated an "immune escape" response by frantically invading the surrounding microenvironment. This phenomenon however was not observed for the wild-type tumor samples which remained intact and produced no relevant cytokine response. Single cells collection and transcriptomic profiling of CAR T cells at regions of interest revealed feasibility of identifying differential gene expression amongst the immune subpopulations. Complimentary 3D in vitro platforms are necessary to uncover cancer immune biology mechanisms, as emphasized by the significant roles of the TME and its heterogeneity.

7.
bioRxiv ; 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36993158

ABSTRACT

To prospectively determine whether brain tumors will respond to immune checkpoint inhibitors (ICIs), we developed a novel mRNA vaccine as a viral mimic to elucidate cytokine release from brain cancer cells in vitro. Our results indicate that cytokine signatures following mRNA challenge differ substantially from ICI responsive versus non-responsive murine tumors. These findings allow for creation of a diagnostic assay to quickly assess brain tumor immunogenicity, allowing for informed treatment with ICI or lack thereof in poorly immunogenic settings.

8.
medRxiv ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36993772

ABSTRACT

Messenger RNA (mRNA) has emerged as a remarkable tool for COVID-19 prevention but its use for induction of therapeutic cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Herein, we develop a facile approach for substantially enhancing immunogenicity of tumor-derived mRNA in lipid-particle (LP) delivery systems. By using mRNA as a molecular bridge with ultrapure liposomes and foregoing helper lipids, we promote the formation of 'onion-like' multi-lamellar RNA-LP aggregates (LPA). Intravenous administration of RNA-LPAs mimics infectious emboli and elicits massive DC/T cell mobilization into lymphoid tissues provoking cancer immunogenicity and mediating rejection of both early and late-stage murine tumor models. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for toll-like receptor engagement, RNA-LPAs stimulate intracellular pathogen recognition receptors (RIG-I) and reprogram the TME thus enabling therapeutic T cell activity. RNA-LPAs were safe in acute/chronic murine GLP toxicology studies and immunologically active in client-owned canines with terminal gliomas. In an early phase first-in-human trial for patients with glioblastoma, we show that RNA-LPAs encoding for tumor-associated antigens elicit rapid induction of pro-inflammatory cytokines, mobilization/activation of monocytes and lymphocytes, and expansion of antigen-specific T cell immunity. These data support the use of RNA-LPAs as novel tools to elicit and sustain immune responses against poorly immunogenic tumors.

10.
Cells ; 11(12)2022 06 20.
Article in English | MEDLINE | ID: mdl-35741103

ABSTRACT

The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Animals , Cell Movement , Immunotherapy, Adoptive/methods , Neoplasms/pathology , T-Lymphocytes , Tumor Microenvironment
11.
Nat Cancer ; 3(1): 11-24, 2022 01.
Article in English | MEDLINE | ID: mdl-35121998

ABSTRACT

Pediatric central nervous system tumors are the most common solid malignancies in childhood, and aggressive therapy often leads to long-term sequelae in survivors, making these tumors challenging to treat. Immunotherapy has revolutionized prospects for many cancer types in adults, but the intrinsic complexity of treating pediatric patients and the scarcity of clinical studies of children to inform effective approaches have hampered the development of effective immunotherapies in pediatric settings. Here, we review recent advances and ongoing challenges in pediatric brain cancer immunotherapy, as well as considerations for efficient clinical translation of efficacious immunotherapies into pediatric settings.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Brain Neoplasms/therapy , Central Nervous System Neoplasms/therapy , Child , Humans , Immunologic Factors , Immunotherapy/adverse effects , Survivors
12.
Neuromolecular Med ; 24(1): 8-12, 2022 03.
Article in English | MEDLINE | ID: mdl-34101090

ABSTRACT

Glioblastoma (GBM) is the most common primary brain tumor in adults and is universally lethal with a median survival of less than two years with standard therapy. RNA-based immunotherapies have significant potential to establish a durable treatment response for malignant brain tumors including GBM. RNA offers clear advantages over antigen-focused approaches but cannot often be directly administered due to biological instability. This review will focus on utilization of RNA dendritic cell vaccines and RNA nanoparticle therapies in the treatment of GBM. RNA-pulsed dendritic cell vaccines have been shown to be safe in a small phase I clinical trial and RNA-loaded nanoparticle vaccines will soon be underway in GBM patients (NCT04573140).


Subject(s)
Brain Neoplasms , Cancer Vaccines , Glioblastoma , Adult , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Cancer Vaccines/therapeutic use , Clinical Trials, Phase I as Topic , Dendritic Cells/pathology , Glioblastoma/genetics , Glioblastoma/therapy , Humans , Immunotherapy , RNA/genetics , RNA/therapeutic use
13.
Front Immunol ; 12: 705580, 2021.
Article in English | MEDLINE | ID: mdl-34421912

ABSTRACT

Evading T cell surveillance is a hallmark of cancer. Patients with solid tissue malignancy, such as glioblastoma (GBM), have multiple forms of immune dysfunction, including defective T cell function. T cell dysfunction is exacerbated by standard treatment strategies such as steroids, chemotherapy, and radiation. Reinvigoration of T cell responses can be achieved by utilizing adoptively transferred T cells, including CAR T cells. However, these cells are at risk for depletion and dysfunction as well. This review will discuss adoptive T cell transfer strategies and methods to avoid T cell dysfunction for the treatment of brain cancer.


Subject(s)
Brain Neoplasms , Glioblastoma , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Glioblastoma/immunology , Glioblastoma/therapy , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/therapeutic use
14.
J Neurooncol ; 151(1): 29-39, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32757093

ABSTRACT

INTRODUCTION: Brain tumors remain especially challenging to treat due to the presence of the blood-brain barrier. The unique biophysical properties of nanomaterials enable access to the tumor environment with minimally invasive injection methods such as intranasal and systemic delivery. METHODS: In this review, we will discuss approaches taken in NP delivery to brain tumors in preclinical neuro-oncology studies and ongoing clinical studies. RESULTS: Despite recent development of many promising nanoparticle systems to modulate immunologic function in the preclinical realm, clinical work with nanoparticles in malignant brain tumors has largely focused on imaging, chemotherapy, thermotherapy and radiation. CONCLUSION: Review of early preclinical studies and clinical trials provides foundational safety, feasibility and toxicology data that can usher a new wave of nanotherapeutics in application of immunotherapy and translational oncology for patients with brain tumors.


Subject(s)
Brain Neoplasms , Nanoparticles , Adjuvants, Immunologic/therapeutic use , Blood-Brain Barrier , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Drug Delivery Systems , Humans , Immunologic Factors/therapeutic use
15.
Cancer Res ; 80(3): 499-509, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31723000

ABSTRACT

Anti-VEGF therapy prolongs recurrence-free survival in patients with glioblastoma but does not improve overall survival. To address this discrepancy, we investigated immunologic resistance mechanisms to anti-VEGF therapy in glioma models. A screening of immune-associated alterations in tumors after anti-VEGF treatment revealed a dose-dependent upregulation of regulatory T-cell (Treg) signature genes. Enhanced numbers of Tregs were observed in spleens of tumor-bearing mice and later in tumors after anti-VEGF treatment. Elimination of Tregs with CD25 blockade before anti-VEGF treatment restored IFNγ production from CD8+ T cells and improved antitumor response from anti-VEGF therapy. The treated tumors overexpressed the glutamate/cystine antiporter SLC7A11/xCT that led to elevated extracellular glutamate in these tumors. Glutamate promoted Treg proliferation, activation, suppressive function, and metabotropic glutamate receptor 1 (mGlutR1) expression. We propose that VEGF blockade coupled with glioma-derived glutamate induces systemic and intratumoral immunosuppression by promoting Treg overrepresentation and function, which can be pre-emptively overcome through Treg depletion for enhanced antitumor effects. SIGNIFICANCE: Resistance to VEGF therapy in glioblastoma is driven by upregulation of Tregs, combined blockade of VEGF, and Tregs may provide an additive antitumor effect for treating glioblastoma.


Subject(s)
Bevacizumab/pharmacology , Drug Resistance, Neoplasm , Glioblastoma/immunology , Glutamic Acid/metabolism , T-Lymphocytes, Regulatory/immunology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antineoplastic Agents, Immunological/pharmacology , Apoptosis , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Female , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/metabolism , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A/immunology
16.
ACS Nano ; 13(12): 13884-13898, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31730332

ABSTRACT

Cancer vaccines initiate antitumor responses in a subset of patients, but the lack of clinically meaningful biomarkers to predict treatment response limits their development. Here, we design multifunctional RNA-loaded magnetic liposomes to initiate potent antitumor immunity and function as an early biomarker of treatment response. These particles activate dendritic cells (DCs) more effectively than electroporation, leading to superior inhibition of tumor growth in treatment models. Inclusion of iron oxide enhances DC transfection and enables tracking of DC migration with magnetic resonance imaging (MRI). We show that T2*-weighted MRI intensity in lymph nodes is a strong correlation of DC trafficking and is an early predictor of antitumor response. In preclinical tumor models, MRI-predicted "responders" identified 2 days after vaccination had significantly smaller tumors 2-5 weeks after treatment and lived 73% longer than MRI-predicted "nonresponders". These studies therefore provide a simple, scalable nanoparticle formulation to generate robust antitumor immune responses and predict individual treatment outcome with MRI.


Subject(s)
Antineoplastic Agents/pharmacology , Dendritic Cells/metabolism , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Animals , Biomarkers, Tumor/metabolism , Cancer Vaccines/immunology , Cell Line, Tumor , Cell Movement/drug effects , Cell Tracking , Dendritic Cells/drug effects , Electroporation , Ferric Compounds/chemistry , Magnetite Nanoparticles/ultrastructure , Mice, Inbred C57BL , Transfection
17.
Nat Commun ; 10(1): 4016, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488817

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy targeting solid tumors has stagnated as a result of tumor heterogeneity, immunosuppressive microenvironments, and inadequate intratumoral T cell trafficking and persistence. Early (≤3 days) intratumoral presentation of CAR T cells post-treatment is a superior predictor of survival than peripheral persistence. Therefore, we have co-opted IL-8 release from tumors to enhance intratumoral T-cell trafficking through a CAR design for maximal antitumor activity in solid tumors. Here, we demonstrate that IL-8 receptor, CXCR1 or CXCR2, modified CARs markedly enhance migration and persistence of T cells in the tumor, which induce complete tumor regression and long-lasting immunologic memory in pre-clinical models of aggressive tumors such as glioblastoma, ovarian and pancreatic cancer.


Subject(s)
Glioblastoma/immunology , Immunotherapy, Adoptive , Interleukin-8/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/metabolism , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cytokines/metabolism , Disease Models, Animal , Female , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Mice, Inbred NOD , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
18.
J Hematol Oncol ; 12(1): 78, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31311607

ABSTRACT

While promising, immunotherapy has yet to be fully unlocked for the preponderance of cancers where conventional chemoradiation reigns. This remains particularly evident in pediatric sarcomas where standard of care has not appreciably changed in decades. Importantly, pediatric bone sarcomas, like osteosarcoma and Ewing's sarcoma, possess unique tumor microenvironments driven by distinct molecular features, as do rhabdomyosarcomas and soft tissue sarcomas. A better understanding of each malignancy's biology, heterogeneity, and tumor microenvironment may lend new insights toward immunotherapeutic targets in novel platform technologies for cancer vaccines and adoptive cellular therapy. These advances may pave the way toward new treatments requisite for pediatric sarcomas and patients in need of new therapies.


Subject(s)
Immunotherapy/methods , Sarcoma/drug therapy , Adolescent , Child , Child, Preschool , Female , Humans , Male , Tumor Microenvironment
19.
Neuro Oncol ; 21(6): 730-741, 2019 06 10.
Article in English | MEDLINE | ID: mdl-30668768

ABSTRACT

BACKGROUND: The changes induced in host immunity and the tumor microenvironment by chemotherapy have been shown to impact immunotherapy response in both a positive and a negative fashion. Temozolomide is the most common chemotherapy used to treat glioblastoma (GBM) and has been shown to have variable effects on immune response to immunotherapy. Therefore, we aimed to determine the immune modulatory effects of temozolomide that would impact response to immune checkpoint inhibition in the treatment of experimental GBM. METHODS: Immune function and antitumor efficacy of immune checkpoint inhibition were tested after treatment with metronomic dose (MD) temozolomide (25 mg/kg × 10 days) or standard dose (SD) temozolomide (50 mg/kg × 5 days) in the GL261 and KR158 murine glioma models. RESULTS: SD temozolomide treatment resulted in an upregulation of markers of T-cell exhaustion such as LAG-3 and TIM-3 in lymphocytes which was not seen with MD temozolomide. When temozolomide treatment was combined with programmed cell death 1 (PD-1) antibody therapy, the MD temozolomide/PD-1 antibody group demonstrated a decrease in exhaustion markers in tumor infiltrating lymphocytes that was not observed in the SD temozolomide/PD-1 antibody group. Also, the survival advantage of PD-1 antibody therapy in a murine syngeneic intracranial glioma model was abrogated by adding SD temozolomide to treatment. However, when MD temozolomide was added to PD-1 inhibition, it preserved the survival benefit that was seen by PD-1 antibody therapy alone. CONCLUSION: The peripheral and intratumoral immune microenvironments are distinctively affected by dose modulation of temozolomide.


Subject(s)
Antibodies, Monoclonal/pharmacology , Brain Neoplasms/immunology , Glioblastoma/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Temozolomide/pharmacology , Animals , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Dose-Response Relationship, Drug , Drug Therapy, Combination , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , T-Lymphocytes/drug effects , T-Lymphocytes/pathology , Tumor Cells, Cultured , Tumor Microenvironment
20.
Mol Ther ; 27(4): 837-849, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30448196

ABSTRACT

With the presence of the blood-brain barrier (BBB), successful immunotherapeutic drug delivery to CNS malignancies remains a challenge. Immunomodulatory agents, such as cytokines, can reprogram the intratumoral microenvironment; however, systemic cytokine delivery has limited access to the CNS. To bypass the limitations of systemically administered cytokines, we investigated if RNA-modified T cells could deliver macromolecules directly to brain tumors. The abilities of T cells to cross the BBB and mediate direct cytotoxic killing of intracranial tumors make them an attractive tool as biological carriers. Using T cell mRNA electroporation, we demonstrated that activated T cells can be modified to secrete granulocyte macrophage colony-stimulating factor (GM-CSF) protein while retaining their inherent effector functions in vitro. GM-CSF RNA-modified T cells effectively delivered GM-CSF to intracranial tumors in vivo and significantly extended overall survival in an orthotopic treatment model. Importantly, GM-CSF RNA-modified T cells demonstrated superior anti-tumor efficacy as compared to unmodified T cells alone or in combination with systemic administration of recombinant GM-CSF. Anti-tumor effects were associated with increased IFN-γ secretion locally within the tumor microenvironment and systemic antigen-specific T cell expansion. These findings demonstrate that RNA-modified T cells may serve as a versatile platform for the effective delivery of biological agents to CNS tumors.


Subject(s)
Brain Neoplasms/therapy , Cell- and Tissue-Based Therapy/methods , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Immunotherapy, Adoptive/methods , RNA/genetics , T-Lymphocytes/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain Neoplasms/mortality , Cell Line, Tumor , Cell Survival/genetics , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Green Fluorescent Proteins/metabolism , Interferon-gamma/biosynthesis , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Transfection/methods , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...