Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(18): e2205729, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37186373

ABSTRACT

Solvatofluorochromic molecules provide strikingly high fluorescent outputs to monitor a wide range of biological, environmental, or materials-related sensing processes. Here, thiazolo[5,4-d]thiazole (TTz) fluorophores equipped with simple alkylamino and nitrophenyl substituents for solid-state, high-performance chemo-responsive sensing applications are reported. Nitroaromatic substituents are known to strongly quench dye fluorescence, however, the TTz core subtly modulates intramolecular charge transfer (ICT) enabling strong, locally excited-state fluorescence in non-polar conditions. In polar media, a planar ICT excited-state shows near complete quenching, enabling a twisted excited-state emission to be observed. These unique fluorescent properties (spectral shifts of 0.13 - 0.87 eV and large transition dipole moments Δµ = 20.4 - 21.3 D) are leveraged to develop highly sought-after chemo-responsive, organic vapor optical sensors. The sensors are developed by embedding the TTz fluorophores within a poly(styrene-isoprene-styrene) block copolymer to form fluorescent dye/polymer composites (ΦF = 70 - 97%). The composites respond reversibly to a comprehensive list of organic solvents and show low vapor concentration sensing (e.g., 0.04% solvent saturation vapor pressure of THF - 66 ppm). The composite films can distinguish between solvent vapors with near complete fluorescent quenching observed when exposed to their saturated solvent vapor pressures, making this an extremely promising material for optical chemo-responsive sensing.


Subject(s)
Fluorescent Dyes , Styrenes , Spectrometry, Fluorescence , Solvents , Molecular Structure
3.
J Am Chem Soc ; 141(47): 18780-18790, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31660737

ABSTRACT

A family of asymmetric thiazolo[5,4-d]thiazole (TTz) fluorescent dye sensors has been developed, and their photophysical sensing properties are reported. The π-conjugated, TTz-bridged compounds are synthesized via a single-step, double condensation/oxidation of dithiooxamide and two different aromatic aldehydes: one with strong electron-donating characteristics and one with strong electron-accepting characteristics. The four reported dyes include electron-donating moieties (N,N-dibutylaniline and N,N-diphenylaniline) matched with three different electron-accepting moieties (pyridine, benzoic acid, and carboxaldehyde). The asymmetric TTz derivatives exhibit strong solvatofluorochromism with Stokes shifts between 0.269 and 0.750 eV (2270 and 6050 cm-1) and transition dipole moments (Δµ = 13-18 D) that are among the highest reported for push-pull dyes. Fluorescence quantum yields are as high as 0.93 in nonpolar solvents, and the fluorescence lifetimes (τF) vary from 1.50 to 3.01 ns depending on the solvent polarity. In addition, thermofluorochromic studies and spectrophotometric acid titrations were performed and indicate the possibility of using these dyes as temperature and/or acid sensors. In vitro cell studies indicate good cell membrane localization, negligible cytotoxicity, promising voltage sensitivities, and photostabilities that are 4 times higher than comparable dyes. Their ease of synthesis and purification, remarkable photophysical properties, and chemically sensitive TTz π-bridge make these asymmetric dye derivatives attractive for environmental and biological sensing or similar molecular optoelectronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...