Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Antioxid Redox Signal ; 19(1): 24-35, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23373818

ABSTRACT

AIM: Ero proteins are central to oxidative protein folding in the endoplasmic reticulum (ER), but their expression varies in a tissue-specific manner. The aim of this work was to establish the expression of Ero1α in the digestive system and to examine the behavior of Ero1α in premalignant Barrett's esophagus, esophageal (OE) and gastric cancers and esophageal cancer cell lines. RESULTS: Ero1α is expressed in the columnar epithelium of Barrett's tissue, and in OE tumors and gastric tumors. Homocysteine, a precursor in the metabolism of cysteine and methionine, induces the active Ox1 form of Ero1α in the OE cancer cell line OE33. INNOVATION: These results demonstrate for the first time that Ero1α can sense the level of an amino acid precursor, identifying a potential link between diet, antioxidants, and oxidative protein folding in the ER. CONCLUSION: The high expression of Ero1α in cancers of the esophagus and stomach demonstrates the importance of ER redox regulation in the gastro-intestinal (GI) tract in health and disease. Proteins and metabolites involved in disulfide bond formation and redox regulation may be suitable targets for both biomarker and drug development in GI cancer.


Subject(s)
Endoplasmic Reticulum/enzymology , Gastrointestinal Neoplasms/enzymology , Homocysteine/metabolism , Membrane Glycoproteins/metabolism , Oxidoreductases/metabolism , Protein Folding , Aged , Cell Line, Tumor , Disulfides/metabolism , Endoplasmic Reticulum/metabolism , Female , Gastrointestinal Neoplasms/metabolism , Humans , Oxidation-Reduction
2.
FEBS Lett ; 576(3): 301-5, 2004 Oct 22.
Article in English | MEDLINE | ID: mdl-15498552

ABSTRACT

The X-ray crystal structure of the copper-containing quinoprotein amine oxidase from E. coli has been determined in complex with the antidepressant drug tranylcypromine to 2.4 A resolution. The drug is a racemic mix of two enantiomers, but only one is seen bound to the enzyme. The other enantiomer is not acting as a substrate for the enzyme as no catalytic activity was detected when the enzyme was initially exposed to the drug. The inhibition of human copper amine oxidases could be a source of side-effects in its use as an antidepressant to inhibit the flavin-containing monoamine oxidases in the brain.


Subject(s)
Amine Oxidase (Copper-Containing)/chemistry , Tranylcypromine/chemistry , Amine Oxidase (Copper-Containing)/metabolism , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Binding Sites , Crystallography, X-Ray/methods , Escherichia coli/enzymology , Models, Molecular , Tranylcypromine/metabolism
3.
Biochem J ; 365(Pt 3): 809-16, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-11985492

ABSTRACT

Copper amine oxidases are homodimeric enzymes containing one Cu(2+) ion and one 2,4,5-trihydroxyphenylalanine quinone (TPQ) per monomer. Previous studies with the copper amine oxidase from Escherichia coli (ECAO) have elucidated the structure of the active site and established the importance in catalysis of an active-site base, Asp-383. To explore the early interactions of substrate with enzyme, we have used tranylcypromine (TCP), a fully reversible competitive inhibitor, with wild-type ECAO and with the active-site base variants D383E and D383N. The formation of an adduct, analogous to the substrate Schiff base, between TCP and the TPQ cofactor in the active site of wild-type ECAO and in the D383E and D383N variants has been investigated over the pH range 5.5-9.4. For the wild-type enzyme, the plot of the binding constant for adduct formation (K(b)) against pH is bell-shaped, indicating two pK(a)s of 5.8 and approximately 8, consistent with the preferred reaction partners being the unprotonated active-site base and the protonated TCP. For the D383N variant, the reaction pathway involving unprotonated base and protonated TCP cannot occur, and binding must follow a less favoured pathway with unprotonated TCP as reactant. Surprisingly, for the D383E variant, the K(b) versus pH behaviour is qualitatively similar to that of D383N, supporting a reaction pathway involving unprotonated TCP. The TCP binding data are consistent with substrate binding data for the wild type and the D383E variant using steady-state kinetics. The results provide strong support for a protonated amine being the preferred substrate for the wild-type enzyme, and emphasize the importance of the active-site base, Asp-383, in the primary binding event.


Subject(s)
Amine Oxidase (Copper-Containing)/metabolism , Dihydroxyphenylalanine/analogs & derivatives , Enzyme Inhibitors/metabolism , Escherichia coli/enzymology , Amine Oxidase (Copper-Containing)/antagonists & inhibitors , Amine Oxidase (Copper-Containing)/genetics , Binding Sites , Catalysis , Coenzymes/metabolism , Dihydroxyphenylalanine/metabolism , Hydrogen-Ion Concentration , Molecular Structure , Mutation , Phenethylamines/metabolism , Protein Binding , Tranylcypromine/metabolism
4.
Inorg Chem ; 36(20): 4520-4525, 1997 Sep 24.
Article in English | MEDLINE | ID: mdl-11670116

ABSTRACT

Redox interconversions between the GOase(semi) (Cu(II), Tyr) and tyrosyl radical containing GOase(ox) (Cu(II), Tyr(*)) oxidation states of the Cu-containing enzyme galactose oxidase (GOase) from Fusarium NRRL 2903 have been studied. The inorganic complexes [Fe(CN)(6)](3)(-) (410 mV), [Co(phen)(3)](3+) (370 mV), [W(CN)(8)](3)(-) (530 mV), and [Co(dipic)(2)](-) (362 mV) (E degrees ' values vs NHE; dipic = 2,6-dicarboxylatopyridine) were used as oxidants for GOase(semi), and [Fe(CN)(6)](4)(-) and [Co(phen)(3)](2+) as reductants for GOase(ox). On oxidation of GOase(semi) a radical is generated at the coordinated phenolate of Tyr-272 to give GOase(ox). The one-electron reduction potential E degrees ' (25 degrees C) for the GOase(ox)/GOase(semi) couple varies with pH and is 400 mV vs NHE at pH 7.5, the smallest value so far observed for a tyrosyl radical. The reactions are very sensitive to pH, or more precisely to pK(a) values of GOase(semi) and GOase(ox), and the charge on the inorganic reagent. For example, with [Fe(CN)(6)](3)(-) as oxidant, the rate constant (25 degrees C)/M(-)(1) s(-)(1) of 0.16 x 10(3) (pH approximately 9.5) increases to 4.3 x 10(3) (pH approximately 5.5), while for [Co(phen)(3)](3+) a value of 4.9 x 10(3) (pH approximately 9.5) decreases to 0.04 x 10(3) (pH approximately 5.5), I = 0.100 M (NaCl). From the kinetics a single GOase(semi) acid dissociation process, pK(a) = 8.0 (average), has been confirmed by UV-vis spectrophotometric studies (7.9). The corresponding value for GOase(ox) is 6.7. No comparable kinetic or spectrophotometric pH dependences are observed with the Tyr495Phe variant, indicating the axial Tyr-495 as the site of protonation. Neutral CH(3)CO(2)H and HN(3) species bind at the substrate binding site of GOase(semi), thus mimicking the behavior of primary alcohols RCH(2)OH, the natural substrate of GOase. On coordination, loss of a proton occurs, and inhibition of the oxidation with [Fe(CN)(6)](3)(-) is observed.

SELECTION OF CITATIONS
SEARCH DETAIL