Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Surg Res ; 18(1): 233, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36949516

ABSTRACT

OBJECTIVES: Thymoquinone is a major bioactive compound present in the black seeds of the Nigella sativa. Tendon injuries are almost 50% of all musculoskeletal injuries. The recovery of tendon after surgery has become a significant challenge in orthopedics. DESIGN: The purpose of this study was to investigate the healing effect of thymoquinone injections in 40 New Zealand rabbits tendon traumatic models. MATERIALS AND METHODS: Tendinopathy was induced by trauma using surgical forceps on the Achilles tendon. Animals were randomly divided into 4 groups: (1) normal saline injection (control), (2) DMSO injection, (3) thymoquinone 5% w/w injection, and (4) thymoquinone 10% w/w injection. Forty-two days after surgery, biochemical and histopathological evaluations were done, and biomechanical evaluation was conducted 70 days after surgery. RESULTS: Breakpoint and yield points in treatment groups were significantly higher compared to control and DMSO groups. Hydroxyproline content in the 10% thymoquinone receiving group was higher than all groups. Edema and hemorrhage in the histopathological evaluation were significantly lower in the thymoquinone 10% and thymoquinone 5% receiving groups compared to control and DMSO groups. Collagen fibers, collagen fibers with fibrocytes, and collagen fibers with fibroblasts were significantly higher in the thymoquinone 10% and thymoquinone 5% receiving groups compared to control groups. CONCLUSIONS: Thymoquinone injection in the tendon in the concentration of 10% w/w is a simple and low-cost healing agent that could enhance mechanical and collagen synthesis in traumatic tendinopathy models in rabbit.


Subject(s)
Achilles Tendon , Tendinopathy , Animals , Rabbits , Achilles Tendon/surgery , Collagen , Dimethyl Sulfoxide , Disease Models, Animal , Tendinopathy/drug therapy , Tendinopathy/etiology , Tendinopathy/pathology
2.
Cell Biochem Funct ; 36(7): 346-356, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30051492

ABSTRACT

Murine c-kit+ cardiac cells were isolated and enriched by magnetic activated cell sorting technique. c-kit+ cells viability and colony-forming activity were evaluated by MTT and clonogenic assay. c-kit+ cells were exposed to endothelial, pericyte, and cardiomyocyte induction media containing 30mM glucose for 7 days. We monitored the level of endothelial (VE-cadherin, CD31, and vWF), pericyte (NG2 , α-SMA, and PDGFR-ß), and cardiomyocyte markers (cTnT) using flow cytometry, real-time Polymerase Chain Reaction (PCR), and Enzyme-Linked Immunosorbent Assay (ELISA) analyses. Ultrastructural changes were studied by transmission electron microscopy (TEM) in cells treated with 5-Azacytidine and 30mM glucose. Matrigel plug assay was performed to determine the angio/cardiogenic property of c-kit+ cells in a diabetic mouse model. Glucose of 30mM decreased c-kit+ cells viability and clonogenicity (P < 0.05). The transdifferentiation capacity of c-kit+ cells into the endothelial lineage, pericytes, and cardiomyocytes were reduced through the inhibition of related genes (P < 0.05). TEM analysis revealed cardiomyocyte differentiation rate in c-kit+ cells coincided with an increased intracellular lipid accumulation and reduced number of mitochondria. Similar to in vitro condition, the angiogenic capacity of c-kit+ cells was aborted in vivo indicated by reduced NG2 , α-SMA, CD31, and vWF levels. High glucose condition reduces the angio/cardiogenic capacity of cardiac c-kit+ cells in vitro and in vivo. SIGNIFICANCE OF THE STUDY: High glucose condition seen in diabetes mellitus could affect the regenerative potential of cardiac tissue. The current experiment showed that the exposure of murine cardiac progenitor cells (CD117+ cells) to condition containing 30mM glucose could decrease the differentiation properties into endothelial cells, pericytes, and mature cardiomyocytes in vitro and in vivo. Our finding confirmed that the angiogenic/cardiogenic potential cardiac progenitor cells decrease under treatment with high glucose content as seen in the diabetic condition.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Myocardium/metabolism , Neovascularization, Pathologic/metabolism , Pregnancy, Animal , Stem Cells/metabolism , Animals , Cell Survival , Diabetes Mellitus, Type 2/pathology , Female , Mice , Myocardium/pathology , Neovascularization, Pathologic/pathology , Pregnancy , Stem Cells/pathology
3.
Exp Toxicol Pathol ; 69(8): 564-574, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28552630

ABSTRACT

The degree and consequence of tissue injury are highly regarded during long-term exposure to selective antidepressant fluoxetine. Melatonin has been shown to palliate different lesions by scavenging free radicals, but its role in the reduction of the fluoxetine-induced injuries has been little known. Thirty-six mature male Wistar rats were randomly assigned into control and experimental groups. The experimental rats were included as following; 24mg/kg/bw fluoxetine for 4 weeks; 1mg/kg/bw melatonin for 4 weeks; fluoxetine+1-week melatonin, fluoxetine+2-week melatonin and fluoxetine+4-week melatonin. In the current experiment, we investigated weight gain, hematological and biochemical parameters, pathological injuries and oxidative status. We noted the positive effect of melatonin in weight loss of fluoxetine-treated rats (p<0.05). The significant reduction of superoxide dismutase, glutathione peroxidase, catalase activities in blood, liver, and kidneys and changes in serum total antioxidant capacity caused by fluoxetine were reversed by melatonin (p<0.05). Melatonin reduced the increased lipid peroxidation and transaminase activity in rats received fluoxetine (p<0.05). We also showed the potency of fluoxetine in inducing leukopenia, thrombocytopenia and hypochromic and macrocytic anemia which was blunted by melatonin. Both RBCs and platelets indices were also corrected. Rats received melatonin in combination with fluoxetine showed a reduction in the severity of degeneration and inflammatory changes in different tissues, brain, heart, liver, lungs, testes and kidneys as compared to the fluoxetine group. Therefore, melatonin fundamentally reversed the side effects of fluoxetine in the rat model which is comparable to human medicine.


Subject(s)
Antioxidants/therapeutic use , Drug-Related Side Effects and Adverse Reactions/prevention & control , Fluoxetine/adverse effects , Melatonin/therapeutic use , Animals , Antioxidants/metabolism , Body Weight/drug effects , Drug-Related Side Effects and Adverse Reactions/blood , Drug-Related Side Effects and Adverse Reactions/enzymology , Erythrocyte Count , Male , Oxidative Stress/drug effects , Platelet Count , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...