Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 141(14): 1708-1717, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36599086

ABSTRACT

The downstream signaling of the interleukin-7 (IL-7) receptor (IL-7R) plays important physiological and pathological roles, including the differentiation of lymphoid cells and proliferation of acute lymphoblastic leukemia cells. Gain-of-function mutations in the IL-7Rα chain, the specific component of the receptor for IL-7, result in constitutive, IL-7-independent signaling and trigger acute lymphoblastic leukemia. Here, we show that the loss of the phosphoinositide 5-phosphatase INPP5K is associated with increased levels of the INPP5K substrate phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) and causes an altered dynamic structure of the IL-7 receptor. We discovered that the IL-7Rα chain contains a very conserved positively charged polybasic amino acid sequence in its cytoplasmic juxtamembrane region; this region establish stronger ionic interactions with negatively charged PtdIns(4,5)P2 in the absence of INPP5K, freezing the IL-7Rα chain structure. This dynamic structural alteration causes defects in IL-7R signaling, culminating in decreased expressions of EBF1 and PAX5 transcription factors, in microdomain formation, cytoskeletal reorganization, and bone marrow B-cell differentiation. Similar alterations after the reduced INPP5K expression also affected mutated, constitutively activated IL-7Rα chains that trigger leukemia development, leading to reduced cell proliferation. Altogether, our results indicate that the lipid 5-phosphatase INPP5K hydrolyzes PtdIns(4,5)P2, allowing the requisite conformational changes of the IL-7Rα chain for optimal signaling.


Subject(s)
Interleukin-7 , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Interleukin-7/genetics , Interleukin-7/metabolism , Phosphatidylinositol 4,5-Diphosphate , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , Signal Transduction/genetics
2.
Adv Biol Regul ; 76: 100651, 2020 05.
Article in English | MEDLINE | ID: mdl-31519471

ABSTRACT

Opsismodysplasia (OPS) is a rare but severe autosomal recessive skeletal chondrodysplasia caused by inactivating mutations in the Inppl1/Ship2 gene. The molecular mechanism leading from Ship2 gene inactivation to OPS is currently unknown. Here, we used our Ship2Δ/Δ mouse expressing reduced amount of a catalytically-inactive SHIP2 protein and a previously reported SHIP2 inhibitor to investigate growth plate development and mineralization in vivo, ex vivo and in vitro. First, as observed in OPS patients, catalytic inactivation of SHIP2 in mouse leads to reduced body length, shortening of long bones, craniofacial dysmorphism, reduced height of the hyperthrophic chondrocyte zone and to defects in growth plate mineralization. Second, intrinsic Ship2Δ/Δ bone defects were sufficient to induce the characteristic OPS alterations in bone growth, histology and mineralization ex vivo. Third, expression of osteocalcin was significantly increased in SHIP2-inactivated chondrocyte cultures whereas production of mineralized nodules was markedly decreased. Targeting osteocalcin mRNA with a specific shRNA increased the production of mineralized nodules. Fourth, levels of p-MEK and p-Erk1/2 were significantly increased in SHIP2-inactivated chondrocytes in response to serum and IGF-1, but not to FGF2, as compared to control chondrocytes. Treatment of chondrocytes and bones in culture with a MEK inhibitor partially rescued the production of mineralized nodules, the size of the hypertrophic chondrocyte zone and bone growth, raising the possibility of a treatment that could partially reduce the phenotype of this severe condition. Altogether, our results indicate that Ship2Δ/Δ mice represent a relevant model for human OPS. They also highlight the important role of SHIP2 in chondrocytes during endochondral ossification and its different differentiation steps. Finally, we identified a role of osteocalcin in mineralized nodules production and for the MEK-Erk1/2 signaling pathway in the OPS phenotype.


Subject(s)
Chondrocytes/metabolism , MAP Kinase Kinase Kinases/genetics , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Osteocalcin/genetics , Osteochondrodysplasias/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Aminoacetonitrile/analogs & derivatives , Aminoacetonitrile/pharmacology , Animals , Calcification, Physiologic/genetics , Cell Differentiation , Chondrocytes/pathology , Disease Models, Animal , Fibroblast Growth Factor 2/pharmacology , Gene Expression Regulation , Growth Plate/metabolism , Growth Plate/pathology , Humans , Insulin-Like Growth Factor I/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Osteocalcin/antagonists & inhibitors , Osteocalcin/metabolism , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Osteogenesis/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/antagonists & inhibitors , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/deficiency , Phosphorylation/drug effects , Primary Cell Culture , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Thiophenes/pharmacology
3.
Nephron Exp Nephrol ; 114(2): e33-8, 2010.
Article in English | MEDLINE | ID: mdl-19887844

ABSTRACT

Chemokines remain attractive therapeutic targets for modulating inflammatory diseases in all areas of medicine including acute and chronic kidney disease. Industry has launched huge programs for the development of chemokine antagonists, and clinical trials with chemokine and chemokine receptor antagonists are ongoing. However, chemokine biology remains an area of unexpected discoveries. Here we discuss a number of questions which need to be addressed to further explore the potential of chemokine antagonism in renal inflammation: Why does renal expression of chemokines and chemokine receptors not always correlate with their functional significance? Why does chemokine antagonism only partially reduce renal leukocyte counts? Will antagonist combinations be more effective in reducing renal inflammation? What are the functional roles of homeostatic chemokines and atypical, nonsignaling chemokine receptors in renal inflammation? And finally, what classes of chemokine antagonists are available to address these questions experimentally?


Subject(s)
Chemokines/immunology , Kidney/immunology , Nephritis/physiopathology , Receptors, Chemokine/immunology , Animals , Chemokines/antagonists & inhibitors , Clinical Trials as Topic , Humans , Leukocyte Count , Nephritis/drug therapy , Receptors, Chemokine/antagonists & inhibitors , Receptors, Chemokine/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...