Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(26): 16997-7006, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26062782

ABSTRACT

The nature of absorption bandshapes of dibenzoylmethanatoboron difluoride (DBMBF2) dye substituted in ortho-, meta-, and para-positions of the phenyl ring is investigated using DFT and TDDFT with the range-separated hybrid CAM-B3LYP functional and the 6-311G(d,p) basis set. The solvent effects are taken into account within the polarized continuum model. The vibronic bandshape is simulated using a time-dependent linear coupling model with a vertical gradient approach through an original code. For flexible chromophores, the spectra of individual conformers are summed up with Boltzmann factors. It is shown that the long-wavelength absorption bandshape of DBMBF2 derivatives is determined by three factors: the relative statistical weights of conformers with different electronic absorption patterns, the relative position and intensity of the second low-energy electronic transition, and the vibronic structure of individual electronic peaks. The latter is governed by the relationship between the hard vibrational modes, which contribute to vibronic progression, and soft modes, which provide broadening of the peaks. The simulated spectra of the dyes in the study are generally consistent with the available experimental data and explain the observed spectral features.

2.
J Mol Model ; 17(8): 1855-62, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21080019

ABSTRACT

The structures of complexes of some small molecules (formaldehyde, acetaldehyde, ammonia, methylamine, methanol, ethanol, acetone, benzene, acetonitrile, ethyl acetate, chloroform, and tetrahydrofuran, considered as possible analytes) with ethylbenzene and silanol (C(6)H(5)C(2)H(5) and SiH(3)OH, considered as models of polystyrene and silica gel substrates) and with acridine (C(13)H(9)N, considered as a model of an indicator dye molecule of the acridine series) and the corresponding interaction energies have been calculated using the DFT-D approximation. The PBE exchange-correlation potential was used in the calculations. The structures of complexes between the analyte and the substrate were determined by optimizing their ground-state geometry using the SVP split-valence double-zeta plus polarization basis set. The complex formation energies were refined by single-point calculations at the calculated equilibrium geometries using the sufficiently large triple-zeta TZVPP basis set. The calculated interaction energies are used to assess the possibility of using dyes of the acridine series adsorbed on a polystyrene or silica substrate for detecting the small molecules listed above.


Subject(s)
Computer Simulation , Models, Molecular , Organic Chemicals/chemistry , Chemistry, Organic
3.
J Phys Chem B ; 111(15): 3953-9, 2007 Apr 19.
Article in English | MEDLINE | ID: mdl-17385910

ABSTRACT

The values of steady-state solvatochromic Stokes shifts (SS) in absorption/emission electronic spectra of organic chromophores are studied theoretically in the framework of the Hush-Marcus model. Charge distributions for chromophore solutes in their S0 and S1 states are found by means of conventional quantum-chemical methods combined with the continuum PCM approach for treating solvation effects. The solvent reorganization energies, which are expected to correlate with the solvent-induced part of 1/2 SS, are found in a molecular dynamics (MD) simulation which invokes a novel method for separation of the inertial piece of the electrostatic response (Vener, et al. J. Phys. Chem. B 2006, 110, 14950). Computations, performed in two solvents (acetonitrile and benzene), consider three organic dyes: coumarin 153 as a benchmark system and two other chromophores, for which experimental spectra are also reported. The results are found to be in reasonable agreement with the experiment. A consistent treatment of nonlinear effect in the solvent response, promoted by the polarizability of solutes and contributing to the solvent reorganization energies (Ingrosso, et al. J. Phys. Chem. B 2005, 109, 3553), improves the results of computations.

SELECTION OF CITATIONS
SEARCH DETAIL
...