Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38475447

ABSTRACT

The efficacy of using a synthetic (azoxystrobin + difenoconazole), copper-based (copper oxychloride) and low-content copper compound (copper complexed with gluconate and lignosulphonate) fungicides for controlling Venturia oleaginea, the causal agent of olive spot disease, was evaluated in an olive (cv. Nabali) orchard located in the Kafr Qud area (Palestine) in 2017-2018. Treatments were applied at three different times (February, April, and August). In January 2017, at the beginning of the experiment, about 90% of the leaves grown in 2016 were infected. Defoliation was determined by counting the leaves on the labeled branches initially and then periodically. It increased gradually in both the control and treated trees, but those treated with azoxystrobin + difenoconazole or with copper complexed with gluconate and lignosulphonate showed a slower defoliation rate. During 2017, new shoots grew and new leaves developed. All treatments reduced the drop of new leaves with respect to the control, with positive effects on the reproductive activity (inflorescence growth and yield). Overall, all treatments significantly reduced the disease, thus indicating the possibility of greatly reducing infections if treatments are regularly applied each year, also with traditional (copper-based) fungicides. Due to their capability of penetrating inside the vegetative tissue, azoxystrobin + difenoconazole or copper complexed with gluconate and lignosulphonate reduced/slowed down the drop of infected leaves. The use of these fungicides is therefore particularly recommended when olive leaf spot disease is severe. The use of low-content copper compounds allows the amount of metallic copper used for the treatments against V. oleaginea to be greatly reduced.

2.
ScientificWorldJournal ; 2015: 870520, 2015.
Article in English | MEDLINE | ID: mdl-25802893

ABSTRACT

Tomato (Solanum lycopersicum) production relies heavily on the use of chemical pesticides, which is undesired by health- and environment-concerned consumers. Environment-friendly methods of controlling tomato diseases include agroecological practices, organic fungicides, and biological control. Plants' resistance against pathogens is induced by applying agents called elicitors to the plants and would lead to disease prevention or reduced severity. We investigated the ability of a novel elicitor extracted from the brown sea algae (Sargassum fusiforme) to elicit induced resistance in tomato. The studied elicitor induced hypersensitive cell death and O2 (-) production in tomato tissues. It significantly reduced severities of late blight, grey mold, and powdery mildew of tomato. Taken together, our novel elicitor has not shown any direct antifungal activity against the studied pathogens, concluding that it is an elicitor of induced resistance.


Subject(s)
Biological Control Agents/pharmacology , Plant Diseases/prevention & control , Sargassum/chemistry , Solanum lycopersicum/microbiology , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Ascomycota/drug effects , Ascomycota/pathogenicity , Biological Control Agents/isolation & purification , Solanum lycopersicum/drug effects , Solanum lycopersicum/physiology , Plant Diseases/microbiology , Plant Immunity/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...