Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 51(5): 2685-2694, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28192987

ABSTRACT

This study investigates, for the first time, dual C-Cl isotope fractionation during anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) via dihaloelimination by Dehalococcoides and Dehalogenimonas-containing enrichment cultures. Isotopic fractionation of 1,2-DCA (εbulkC and εbulkCl) for Dehalococcoides (-33.0 ± 0.4‰ and -5.1 ± 0.1‰) and Dehalogenimonas-containing microcosms (-23 ± 2‰ and -12.0 ± 0.8‰) resulted in distinctly different dual element C-Cl isotope correlations (Λ = Δδ13C/Δδ37Cl ≈ εbulkC/εbulkCl), 6.8 ± 0.2 and 1.89 ± 0.02, respectively. Determined isotope effects and detected products suggest that the difference on the obtained Λ values for biodihaloelimination could be associated with a different mode of concerted bond cleavage rather than two different reaction pathways (i.e., stepwise vs concerted). Λ values of 1,2-DCA were, for the first time, determined in two field sites under reducing conditions (2.1 ± 0.1 and 2.2 ± 2.9). They were similar to the one obtained for the Dehalogenimonas-containing microcosms (1.89 ± 0.02) and very different from those reported for aerobic degradation pathways in a previous laboratory study (7.6 ± 0.1 and 0.78 ± 0.03). Thus, this study illustrates the potential of a dual isotope analysis to differentiate between aerobic and anaerobic biodegradation pathways of 1,2-DCA in the field and suggests that this approach might also be used to characterize dihaloelimination of 1,2-DCA by different bacteria, which needs to be confirmed in future studies.


Subject(s)
Biodegradation, Environmental , Carbon Isotopes , Chemical Fractionation , Chloroflexi/metabolism , Kinetics
2.
J Contam Hydrol ; 179: 116-31, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26093106

ABSTRACT

A severe groundwater contamination with extensive plumes of arsenic, phosphate and ammonium was found in a coastal aquifer beneath a former fertilizer production plant. The implementation of an active groundwater remediation strategy, based on a comprehensive pump and treat scheme, now prevents the migration of the dissolved contaminants into the marine environment. However, due to the site's proximity to the coastline, a seawater wedge was induced by the pumping scheme. Additionally the groundwater flow and salinity patterns were also strongly affected by leakage from the site's sewer system and from a seawater-fed cooling canal. The objective of this study was to elucidate the fate of arsenic and its co-contaminants over the site's history under the complex, coupled hydrodynamic and geochemical conditions that prevail at the site. A detailed geochemical characterisation of samples from sediment cores and hydrochemical data provided valuable high-resolution information. The obtained data were used to develop various conceptual models and to constrain the development and calibration of a reactive transport model. The reactive transport simulations were performed for a sub-domain (two-dimensional transect) of an earlier developed three-dimensional flow and variable density solute transport model. The results suggest that in the upper sub-oxic zone the influx of oxygenated water promoted As attenuation via co-precipitation with Al and Fe oxides and copper hydroxides. In contrast, in the deeper aquifer zone, iron reduction, associated with the release of adsorbed As and the dissolution of As bearing phases, provided and still provides to date a persistent source for groundwater pollution. The presented monitoring and modelling approach could be broadly applied to coastal polluted sites by complex contaminant mixture containing As.


Subject(s)
Ammonium Compounds/analysis , Arsenic/analysis , Groundwater/analysis , Phosphates/analysis , Water Pollutants, Chemical/analysis , Aluminum Oxide/chemistry , Arsenic/chemistry , Chemical Precipitation , Environmental Monitoring/methods , Ferric Compounds/chemistry , Groundwater/chemistry , Hydrology/methods , Models, Theoretical , Salinity , Seawater , Water Pollutants, Chemical/chemistry
3.
Environ Sci Pollut Res Int ; 22(20): 15536-48, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26006074

ABSTRACT

The present study deals with the application of different monitoring techniques and numerical models to characterize coastal aquifers affected by multiple sources of contamination. Specifically, equivalent freshwater heads in 243 monitoring wells were used to reconstruct the piezometric map of the studied aquifer; flow meter tests were carried out to infer vertical groundwater fluxes at selected wells; deuterium and oxygen isotopes were used to identify the groundwater origin, and tritium was analyzed to estimate the residence time; compound-specific isotope analyses and microbial analyses were employed to track different sources of contamination and their degradation; numerical modelling was used to estimate and verify groundwater flow direction and magnitude throughout the aquifer. The comparison of the information level for each technique allowed determining which of the applied approaches showed the best results to locate the possible sources and better understanding of the fate of the contaminants. This study reports a detailed site characterization process and outcomes for a coastal industrial site, where a comprehensive conceptual model of pollution and seawater intrusion has been built using different assessment methods. Information and results from this study encourages combining different methods for the design and implementation of the monitoring activities in real-life coastal contaminated sites in order to develop an appropriate strategy for control and remediation of the contamination.


Subject(s)
Groundwater/analysis , Water Pollutants, Chemical/analysis , Humans , Italy , Oxygen/analysis , Seawater/analysis , Water Microbiology , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...