Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 416(1): 200-211, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27212026

ABSTRACT

FOXL2 belongs to the evolutionarily conserved forkhead box (FOX) superfamily and is a master transcription factor in a spectrum of developmental pathways, including ovarian and eyelid development and bone, cartilage and uterine maturation. To analyse its action, we searched for proteins that interact with FOXL2. We found that FOXL2 interacts with specific C-terminal propeptides of several fibrillary collagens. Because these propeptides can participate in feedback regulation of collagen biosynthesis, we inferred that FOXL2 could thereby affect the transcription of the cognate collagen genes. Focusing on COL1A2, we found that FOXL2 indeed affects collagen synthesis, by binding to a DNA response element located about 65Kb upstream of this gene. According to our hypothesis we found that in Foxl2(-/-) mouse ovaries, Col1a2 was elevated from birth to adulthood. The extracellular matrix (ECM) compartmentalizes the ovary during folliculogenesis, (with type I, type III and type IV collagens as primary components), and ECM composition changes during the reproductive lifespan. In Foxl2(-/-) mouse ovaries, in addition to up-regulation of Col1a2, Col3a1, Col4a1 and fibronectin were also upregulated, while laminin expression was reduced. Thus, by regulating levels of extracellular matrix components, FOXL2 may contribute to both ovarian histogenesis and the fibrosis attendant on depletion of the follicle reserve during reproductive aging and menopause.


Subject(s)
Collagen Type I/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Animals , Cell Line , Chromatin Immunoprecipitation , Collagen Type I/metabolism , Consensus Sequence , Extracellular Matrix/metabolism , Female , Forkhead Box Protein L2 , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Ovary/metabolism , Promoter Regions, Genetic , Protein Binding
2.
Bioinformatics ; 30(13): 1928-9, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24618473

ABSTRACT

UNLABELLED: End-to-end next-generation sequencing microbiology data analysis requires a diversity of tools covering bacterial resequencing, de novo assembly, scaffolding, bacterial RNA-Seq, gene annotation and metagenomics. However, the construction of computational pipelines that use different software packages is difficult owing to a lack of interoperability, reproducibility and transparency. To overcome these limitations we present Orione, a Galaxy-based framework consisting of publicly available research software and specifically designed pipelines to build complex, reproducible workflows for next-generation sequencing microbiology data analysis. Enabling microbiology researchers to conduct their own custom analysis and data manipulation without software installation or programming, Orione provides new opportunities for data-intensive computational analyses in microbiology and metagenomics. AVAILABILITY AND IMPLEMENTATION: Orione is available online at http://orione.crs4.it.


Subject(s)
Software , High-Throughput Nucleotide Sequencing , Internet , Metagenomics , Microbiological Techniques , Reproducibility of Results
3.
J Bone Miner Res ; 28(5): 1041-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23280965

ABSTRACT

Human Autosomal Recessive Osteopetrosis (ARO) is a genetically heterogeneous disorder caused by reduced bone resorption by osteoclasts. In 2000, we found that mutations in the TCIRG1 gene encoding for a subunit of the proton pump (V-ATPase) are responsible for more than one-half of ARO cases. Since then, five additional genes have been demonstrated to be involved in the pathogenesis of the disease, leaving approximately 25% of cases that could not be associated with a genotype. Very recently, a mutation in the sorting nexin 10 (SNX10) gene, whose product is suggested to interact with the proton pump, has been found in 3 consanguineous families of Palestinian origin, thus adding a new candidate gene in patients not previously classified. Here we report the identification of 9 novel mutations in this gene in 14 ARO patients from 12 unrelated families of different geographic origin. Interestingly, we define the molecular defect in three cases of "Västerbottenian osteopetrosis," named for the Swedish Province where a higher incidence of the disease has been reported. In our cohort of more than 310 patients from all over the world, SNX10-dependent ARO constitutes 4% of the cases, with a frequency comparable to the receptor activator of NF-κB ligand (RANKL), receptor activator of NF-κB (RANK) and osteopetrosis-associated transmembrane protein 1 (OSTM1)-dependent subsets. Although the clinical presentation is relatively variable in severity, bone seems to be the only affected tissue and the defect can be almost completely rescued by hematopoietic stem cell transplantation (HSCT). These results confirm the involvement of the SNX10 gene in human ARO and identify a new subset with a relatively favorable prognosis as compared to TCIRG1-dependent cases. Further analyses will help to better understand the role of SNX10 in osteoclast physiology and verify whether this protein might be considered a new target for selective antiresorptive therapies.


Subject(s)
Genes, Recessive , Mutation , Osteopetrosis/genetics , Sorting Nexins/genetics , Amino Acid Sequence , Cohort Studies , Humans , Molecular Sequence Data , Sequence Homology, Amino Acid , Severity of Illness Index , Sorting Nexins/chemistry
4.
PLoS One ; 5(7): e11742, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20668533

ABSTRACT

Despite the wide use of cell lines in cancer research, the extent to which their surface properties correspond to those of primary tumors is poorly characterized. The present study addresses this problem from a transcriptional standpoint, analyzing the expression of membrane protein genes--the Membranome--in primary tumors and immortalized in-vitro cultured tumor cells. 409 human samples, deriving from ten independent studies, were analyzed. These comprise normal tissues, primary tumors and tumor derived cell lines deriving from eight different tissues: brain, breast, colon, kidney, leukemia, lung, melanoma, and ovary. We demonstrated that the Membranome has greater power than the remainder of the transcriptome when used as input for the automatic classification of tumor samples. This feature is maintained in tumor derived cell lines. In most cases primary tumors show maximal similarity in Membranome expression with cell lines of same tissue origin. Differences in Membranome expression between tumors and cell lines were analyzed also at the pathway level and biological themes were identified that were differentially regulated in the two settings. Moreover, by including normal samples in the analysis, we quantified the degree to which cell lines retain the Membranome up- and down-regulations observed in primary tumors with respect to their normal counterparts. We showed that most of the Membranome up-regulations observed in primary tumors are lost in the in-vitro cultured cells. Conversely, the majority of Membranome genes down-regulated upon tumor transformation maintain lower expression levels also in the cell lines. This study points towards a central role of Membranome genes in the definition of the tumor phenotype. The comparative analysis of primary tumors and cell lines identifies the limits of cell lines as a model for the study of cancer-related processes mediated by the cell surface. Results presented allow for a more rational use of the cell lines as a model of cancer.


Subject(s)
Cell Membrane/genetics , Neoplasms/genetics , Cell Line , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , In Vitro Techniques , Oligonucleotide Array Sequence Analysis
5.
PLoS One ; 3(1): e1508, 2008 Jan 30.
Article in English | MEDLINE | ID: mdl-18231595

ABSTRACT

A novel and efficient tagArray technology was developed that allows rapid identification of antibodies which bind to receptors with a specific expression profile, in the absence of biological information. This method is based on the cloning of a specific, short nucleotide sequence (tag) in the phagemid coding for each phage-displayed antibody fragment (phage-Ab) present in a library. In order to set up and validate the method we identified about 10,000 different phage-Abs binding to receptors expressed in their native form on the cell surface (10 k Membranome collection) and tagged each individual phage-Ab. The frequency of each phage-Ab in a given population can at this point be inferred by measuring the frequency of its associated tag sequence through standard DNA hybridization methods. Using tiny amounts of biological samples we identified phage-Abs binding to receptors preferentially expressed on primary tumor cells rather than on cells obtained from matched normal tissues. These antibodies inhibited cell proliferation in vitro and tumor development in vivo, thus representing therapeutic lead candidates.


Subject(s)
Antibodies, Monoclonal/genetics , Bacteriophages/genetics , Oligonucleotide Array Sequence Analysis , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacokinetics , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Surface Plasmon Resonance
6.
J Virol ; 76(15): 7736-46, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12097587

ABSTRACT

Tamarins (Saguinus species) infected by GB virus B (GBV-B) have recently been proposed as an acceptable surrogate model for hepatitis C virus (HCV) infection. The availability of infectious genomic molecular clones of both viruses will permit chimeric constructs to be tested for viability in animals. Studies in cells with parental and chimeric constructs would also be very useful for both basic research and drug discovery. For this purpose, a convenient host cell type supporting replication of in vitro-transcribed GBV-B RNA should be identified. We constructed a GBV-B subgenomic selectable replicon based on the sequence of a genomic molecular clone proved to sustain infection in tamarins. The corresponding in vitro-transcribed RNA was used to transfect the Huh7 human hepatoma cell line, and intracellular replication of transfected RNA was shown to occur, even though in a small percentage of transfected cells, giving rise to antibiotic-resistant clones. Sequence analysis of GBV-B RNA from some of those clones showed no adaptive mutations with respect to the input sequence, whereas the host cells sustained higher GBV-B RNA replication than the original Huh7 cells. The enhancement of replication depending on host cell was shown to be a feature common to the majority of clones selected. The replication of GBV-B subgenomic RNA was susceptible to inhibition by known inhibitors of HCV to a level similar to that of HCV subgenomic RNA.


Subject(s)
Flaviviridae/physiology , Genome, Viral , Replicon/genetics , Virus Replication , Amino Acid Sequence , Animals , Antiviral Agents/pharmacology , Base Sequence , Carcinoma, Hepatocellular , Cell Line , Clone Cells/virology , Flaviviridae/drug effects , Humans , Molecular Sequence Data , Replicon/drug effects , Saguinus , Sequence Analysis, DNA , Transfection , Tumor Cells, Cultured , Viral Proteins/metabolism
7.
J Gen Virol ; 82(Pt 10): 2437-2448, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11562537

ABSTRACT

The strong similarity between GB virus B (GBV-B) and hepatitis C virus (HCV) makes tamarins infected by GBV-B an acceptable surrogate animal model for HCV infection. Even more attractive, for drug discovery purposes, is the idea of constructing chimeric viruses by inserting HCV genes of interest into a GBV-B genome frame. To accomplish this, infectious cDNA clones of both viruses must be available. The characterization of several HCV molecular clones capable of infecting chimpanzees has been published, whereas only one infectious GBV-B clone inducing hepatitis in tamarins has been reported so far. Here we describe the infection of tamarins by intrahepatic injection of RNA transcribed from a genomic GBV-B clone (FL-3) and transmission of the disease from infected to naive tamarins via serum inoculation. The disease resulting from both direct and secondary infection was characterized for viral RNA titre and hepatitis parameters as well as for viral RNA distribution in the hepatic tissue. Host humoral immune response to GBV-B antigens was also monitored. The progression of the disease was compared to that induced by intravenous injection of different amounts of the non-recombinant virus.


Subject(s)
Flaviviridae/genetics , Hepatitis, Viral, Animal/etiology , Virion/genetics , Animals , Base Sequence , Genome, Viral , Hepatitis Antibodies/biosynthesis , Leukocytes, Mononuclear/virology , Liver/virology , Molecular Sequence Data , RNA, Viral/analysis , Saguinus , Transcription, Genetic
8.
J Gen Virol ; 81(Pt 9): 2183-2188, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10950975

ABSTRACT

The identification of antivirals and vaccines against hepatitis C virus (HCV) infection is hampered by the lack of convenient animal models. The need to develop surrogate models has recently drawn attention to GB virus B (GBV-B), which produces hepatitis in small primates. In a previous study in vitro, it was shown that GBV-B NS3 protease shares substrate specificity with the HCV enzyme, known to be crucial for virus replication. In this report, GBV-B NS3 activity on GBV-B precursor proteins has been analysed in a cell-based system. It is shown that mature protein products are obtained that are compatible with the cleavage sites proposed on the basis of sequence homology with HCV and that GBV-B NS4A protein is required as a cofactor for optimal enzymatic activity. Experiments in vitro supported by a structural model mapped the region of NS4A that interacts with NS3 and showed that the GBV-B cofactor cannot be substituted for by its HCV analogue.


Subject(s)
Antigens, Viral/metabolism , Flaviviridae/physiology , RNA Helicases/metabolism , Serine Endopeptidases/metabolism , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Animals , Cebidae , Cells, Cultured , Hepacivirus/physiology , Models, Molecular , Molecular Sequence Data , Protein Sorting Signals , Structure-Activity Relationship , Substrate Specificity , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...