Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 310: 136753, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36216114

ABSTRACT

Combining photocatalysis (PC) and membrane filtration (MF) has emerged as an attractive technology for water purification, however, the water purification efficiency and membrane fouling are still challenging. Herein, we report a novel photoelectrocatalytic (PEC) membrane mediated by a ternary polyvinylidene fluoride (PVDF)-carbon black (CB)-TiO2 composite conductive membrane synthesized by a phase inversion method assisted by the mixed surfactants of polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS). The resultant electrically conductive TiO2/CB/PVDF membrane features a homogeneous surface with obvious pore size of 20-150 nm, a thickness ∼116 µm, and an average resistivity as low as ∼3.165 Ω∙m. The cooperation of PVP and SDS surfactants dramatically improves the organic-inorganic interactions and thus eventually enhances the porosity, stability of porous structure, mechanical stability, and conductivity and electrochemical properties of the hybrid membrane. Upon the solvent evaperation of the wellblended casting solution and the phase inversion, TiO2/CB preferentially exist on the surface of PVDF membrane, enabling the efficient PEC degradation of organic pollutants. The synergistic coupling of TiO2 and CB in PVDF membrane results in efficient PEC properties with bi-functional membrane antifouling and enhanced water purification in azo dyes decolorization under the stationary mode and in our lab-made continuous cross-flow PEC system, superior to those by photocatalysis and electrocatalysis. The developed synchronous MF and PEC system mediated by the conductive TiO2/CB/PVDF membrane proves to a feasible route to improving the self-cleaning properties of the polymer membrane while simultaneously increasing the water decontaminating efficiency.

2.
Environ Res ; 198: 111257, 2021 07.
Article in English | MEDLINE | ID: mdl-33974837

ABSTRACT

Paper-TiO2-Ag2O floating photocatalysts were produced under mild condition and their photocatalytic activity for the degradation of aromatic amine under sunlight stimulant was investigated. Characterizations by Raman, XRD, XPS, DRS and PL confirmed the presence of TiO2 and Ag2O, and the morphology of the appended TiO2/Ag2O layer was probed by FE-SEM. The photocatalytic activity of the prepared samples was investigated by the degradation of aniline (AN) in water under simulated sun-light illumination and constrained conditions, i.e. non-stirring and non-oxygenation. The presence of Ag2O combined with TiO2 was shown to improve the resistance of paper to bacteria attack, thus increasing the durability of the photocatalyst. Thanks to its hydrophobic character, the paper-TiO2-Ag2O NPs can be employed as useful floating photocatalyst and can be reused in continuous cycles.


Subject(s)
Cellulose , Silver , Anti-Bacterial Agents/pharmacology , Catalysis , Titanium
3.
Chemosphere ; 269: 128703, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33168280

ABSTRACT

In this study, a facile and effective route to prepare hybrid photocatalysts (paper-TiO2, paper-TiO2-AgBr and paper-AgBr-TiO2) has been reported. The preparation procedure consisted of the direct adsorption of the previously synthesized titania nanoparticles (TiO2 sol) to generate the TiO2 nanosphere and the immersion process in an aqueous suspension of AgBr to form the AgBr nanoclusters on paper fibers. The synthesis technology is economic, efficient, environmentally friendly and easy to implement even at industrial scale. A cellulose-based structure with well dispersed TiO2 particles of around 1 µm and a pseudo-liquid coating of Ag+ and AgBr species was obtained. All the prepared photocatalysts demonstrated effective photocatalytic performance in gaseous phase ethanol degradation with simulated sunlight illumination, through the direct mineralization to CO2 and the parallel reaction via acetaldehyde degradation. A relevant improvement in the photocatalytic activity was noticed when TiO2 was associated with AgBr nanocrystals, with a higher effect observed when AgBr was loaded onto the paper surface prior to TiO2. Ag-Ti interaction reduces the pair recombination rate and increases the available charge carriers generating reactive OH- radicals from both Ag-species and TiO2, and O2- radicals from Ag+-AgBr species, which would be involved in the ethanol degradation process.


Subject(s)
Bromides , Silver Compounds , Catalysis , Ethanol , Titanium
4.
Nanomaterials (Basel) ; 10(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150928

ABSTRACT

A facile method to produce paper-TiO2 decorated with AgBr nanoparticles by a mild hydrothermal process at 140 °C was reported. The synthesis method was based on the immersion of the paper in a ready-made suspension of TiO2/AgBr, comprising TiO2 sol solution prepared in acidic conditions and AgBr solution (10-4 M). A paper-TiO2 sample was prepared and used as reference. The formation of crystalline phases of titanium oxide (TiO2) and silver bromide (AgBr) was demonstrated by XRD, Raman and EDX analyses. The surface morphology of the TiO2-AgBr was investigated by Field Effect Scanning Electronic Microscopy (FE-SEM). The photocatalytic performances of the prepared material were evaluated in the degradation of 2-propanol in the gas phase, under simulated sunlight illumination. Its antibacterial properties against Escherichia coli (E. coli) were also assessed. The efficiency of photodegradation and the anti-bacterial properties of paper-TiO2-AgBr were attributed to an improvement in the absorption of visible light, the increased production of reactive oxygen species (ROS) and the low recombination of photogenerated charge carriers due to the synergistic effect between TiO2 and AgBr/Ag nanoparticles.

5.
J Environ Sci (China) ; 60: 3-13, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29031443

ABSTRACT

A novel photocatalyst based on TiO2-PANI composite supported on small pieces of cork has been reported. It was prepared by simple impregnation method of the polyaniline (PANI)-modified TiO2 on cork. The TiO2-PANI/Cork catalyst shows the unique feature of floating on the water surface. The as-synthesized catalyst was characterized by X-ray diffraction (XRD), scanning electron micrograph (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectra (UV-vis DRS) and the Brunauer-Emmett-Teller (BET) surface area analysis. Characterization suggested the formation of anatase highly dispersed on the cork surface. The prepared floating photocatalyst showed high efficiency for the degradation of methyl orange dye and other organic pollutants under solar irradiation and constrained conditions, i.e., no-stirring and no-oxygenation. The TiO2-PANI/Cork floating photocatalyst can be reused for at least four consecutive times without significant decrease of the degradation efficiency.


Subject(s)
Aniline Compounds/chemistry , Photochemical Processes , Water Pollutants, Chemical/chemistry , Azo Compounds/chemistry , Nanocomposites/chemistry , Sunlight , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...