Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 56(11): 1486-95, 2001 Jun 12.
Article in English | MEDLINE | ID: mdl-11402105

ABSTRACT

BACKGROUND: Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked methyl CpG binding protein 2 (MeCP2) gene. METHODS: One hundred sixteen patients with classical and atypical RTT were studied for mutations of the MeCP2 gene by using DHPLC and direct sequencing. RESULTS: Causative mutations in the MeCP2 gene were identified in 63% of patients, representing a total of 30 different mutations. Mutations were identified in 72% of patients with classical RTT and one third of atypical cases studied (8 of 25). The authors found 17 novel mutations, including a complex gene rearrangement found in one individual involving two deletions and a duplication. The duplication was identical to a region within the 3' untranslated region (UTR), and represents the first report of involvement of the 3' UTR in RTT. The authors also report the identification of MeCP2 mutations in two males; a Klinefelter's male with classic RTT (T158M) and a hemizygous male infant with a Xq27-28 inversion and a novel 32 bp frameshift deletion [1154(del32)]. Studies examining the relationship between mutation type, X-inactivation status, and severity of clinical presentation found significant differences in clinical presentation between different types of mutations. Mutations in the amino-terminus were significantly correlated with a more severe clinical presentation compared with mutations closer to the carboxyl-terminus of MeCP2. Skewed X-inactivation patterns were found in two asymptomatic carriers of MeCP2 mutations and six girls diagnosed with either atypical or classical RTT. CONCLUSION: This patient series confirms the high frequency of MeCP2gene mutations causative of RTT in females and provides data concerning the molecular basis for clinical variability (mutation type and position and X-inactivation patterns).


Subject(s)
Chromosomal Proteins, Non-Histone , DNA-Binding Proteins/genetics , Gene Deletion , Repressor Proteins , Rett Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Dosage Compensation, Genetic , Female , Gene Rearrangement , Genotype , Humans , Male , Methyl-CpG-Binding Protein 2 , Phenotype , Point Mutation , Severity of Illness Index
2.
Curr Neurol Neurosci Rep ; 1(2): 168-74, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11898513

ABSTRACT

The outstanding advances in the molecular characterization of muscle diseases, including muscular dystrophies, inflammatory myopathies, and ion channel disorders, have resulted in the identification of potential targets for pharmacologic and genetic therapy in the best characterized of these diseases. The most common myopathy in children, Duchenne muscular dystrophy (DMD), is the focus of active pharmacologic clinical trials. Genetic transfer therapy research for this and other dystrophies is rapidly moving forward. However, as new approaches for treatment are being actively investigated, the current modality of treatment for all myopathies is still in the realm of physical medicine and rehabilitation. The focus of this review is on the advances in pharmacologic and genetic therapy research in DMD and limb girdle muscular dystrophies.


Subject(s)
Genetic Therapy , Muscular Dystrophies/therapy , Animals , Cell Transplantation , Child , Child, Preschool , Clinical Trials as Topic , Creatine/therapeutic use , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/physiology , Drug Administration Schedule , Dystrophin/genetics , Female , Gene Expression Regulation , Genetic Vectors/therapeutic use , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/physiology , Mice , Mice, Inbred mdx , Muscle, Skeletal/cytology , Muscular Dystrophies/drug therapy , Muscular Dystrophies/physiopathology , Muscular Dystrophy, Animal/therapy , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Muscular Dystrophy, Duchenne/therapy , Prednisone/adverse effects , Prednisone/therapeutic use , Pregnenediones/therapeutic use , Protein Biosynthesis , Sarcolemma/pathology , Utrophin
SELECTION OF CITATIONS
SEARCH DETAIL
...