Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Argent Microbiol ; 55(4): 307-316, 2023.
Article in English | MEDLINE | ID: mdl-37344239

ABSTRACT

This study is the first report on mycosynthesis of silver nanoparticles (NPs) using psychrotrophic Antarctic filamentous fungi, and the first report regarding Tulasnella (Basidiomycota). In this work, the ability to synthesize silver NPs from cell free filtrates of strains of Tulasnella albida isolated from Antarctica was assessed. All fungal filtrates were capable of synthesizing silver NPs with the addition of AgNO3. UV-vis spectroscopy, TEM and SEM microscopy analyses were performed to characterize the synthesized NPs. ATR-FTIR and Micro Raman spectroscopy analyses were conducted to find functional groups responsible for the reduction of AgNO3 and to detect the presence of silver oxide on the AgNPs. Theoretical calculations of optical absorption based on core-shell Ag-Ag2O were used to characterize the experimental absorption spectra of silver NPs colloids. Spherically shaped silver NPs, typically 2-3nm in diameter, were obtained. The largest ones showed a capping shell around them, which could be associated with the formation of small silver NPs. Functional groups corresponding to amides and alcohols were detected, confirming the presence of proteins as possible intermediates in the synthesis of AgNPs. On the other hand, the Micro Raman analysis confirms the presence of silver oxide on the surface of the AgNPs. This work presents a simple procedure for the synthesis of silver NPs using a psychrotrophic organism that could be interesting for the industry.


Subject(s)
Basidiomycota , Metal Nanoparticles , Metal Nanoparticles/chemistry , Antarctic Regions , Zinc Acetate , Silver , Anti-Bacterial Agents
2.
Phys Chem Chem Phys ; 24(45): 28019-28028, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36373853

ABSTRACT

This paper is devoted to determine an analytical expression for the thickness dependent complex dielectric function for the case of Ag and Au thin films. Free and bound electron contributions are dealt with independently. Using Drude model for the former and taking experimental refractive index values for Ag and Au thin films, we apply a previously developed method to determine for the first time damping constant and plasma frequency parameters for specific film thicknesses. Fitting separately each one of these parameters allowed us to find an analytical expression for their dependence on arbitrary film thickness and consequently for the free electron contribution. Concerning bound electrons, its contribution for small wavelengths is the same for all analyzed thicknesses and may be set equal to the bulk bound contribution. Taking these facts into account, the complex dielectric function is rewritten analytically, in terms of bulk dielectric function plus corrective film thickness dependent terms. From the fitting process for the damping constant we determine that electron scattering at the film boundary is mainly inelastic for both silver and gold thin films. It is also shown that, in accordance with theoretical studies, plasma frequency shows a red shift as the film thickness decreases.

3.
Sci Rep ; 10(1): 8217, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32427832

ABSTRACT

While there are conventional chemical synthesis methods to generate metal nanoclusters (NCs), many of them are adversely affected by the unavoidable contamination of the nanoproduct solution, resulting in aggregation, background noise in analytical chemistry, toxicity, and deactivation of the catalyst. In this work, physical method of ultrafast laser ablation as a "green" synthesis approach together with mechanical centrifugation to obtain silver NCs, simplifying widely the chemical synthesis requirements, is proposed. Remarkably, compared with conventional methods for synthesizing Ag NCs, this new approach starts with a colloid that contains nanosized particles as well as smaller species, managing to obtain colloids with few atoms NCs by centrifugation. Those colloids were analyzed by fluorescence spectroscopy observing UV bands corresponding with HOMO-LUMO cluster transitions. Besides, independent HRTEM measurements were made confirming the presence of few atoms Ag NCs, as well as small NPs in different formation stages. Equally important, photocatalytic efficiency of the obtained NCs was studied through degradation of Methylene Blue (MB) when it was mixed with as-prepared or highly centrifuged colloid, showing an enhanced photocatalytic efficiency of 79% as compared to 57% for pure MB after 180 min of illumination. Consequently, this work contributes to establishing a simple approach to synthesize highly fluorescent and photocatalytic NCs.

4.
Nanoscale Adv ; 1(10): 3909-3917, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-36132095

ABSTRACT

Observation of relevant phenomena related with dynamical redox process in a plasmonic heterogeneous-photocatalyst system composed by silver nanoparticles (NPs) around and in contact with amorphous silver chloride NPs are reported by in situ transmission electron microscopy. During this process, nanobubbles are initially produced inside the silver chloride NPs, which immediately begin to move within the amorphous phase. Besides, silver atoms inside the silver chloride NPs start to migrate out the occupied volume leaving a space behind, which is filled by crystalline regions of silver chloride located between the pre-existing silver NPs. During the observation time, fast-nucleation, movement, growth, and fast-dissolution of silver NPs take place. Specific space correlation with silver mass loss (or gain) when a new NP is formed (or dissolved), was detected in different regions during the reaction. This mass loss (or gain) takes place on certain places of pre-existing silver NPs. All these phenomena were observed for a configuration comprising at least two silver NPs separated few nanometers apart by a silver chloride NP.

5.
Chemphyschem ; 18(9): 1192-1209, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28295909

ABSTRACT

Magnetic nanoparticles have attracted much interest due to their broad applications in biomedicine and pollutant remediation. In this work, the optical, magnetic, and structural characteristics of colloids produced by ultrashort pulsed laser ablation of a solid Fe target were studied in four different media: HPLC water, an aqueous solution of trisodium citrate, acetone, and ethanol. Optical extinction spectroscopy revealed an absorption band in the UV region for all, in contrast to the results obtained with nanosecond lasers. Micro-Raman spectroscopy showed that the samples are heterogeneous in their composition, with hematite, maghemite, and magnetite nanoparticles in all four solvents. Similar results were obtained by electron diffraction, which also found α-Fe. Magnetic properties were studied by vibrating-sample magnetometry, and showed nanoparticles in the superparamagnetic state. Under certain experimental conditions, submicrometer-sized iron oxide nanoparticles agglomerate into fractal patterns that show self-similar properties. Self-assembled annular structures on the nanometer scale were also observed and are reported for the first time.

6.
Phys Chem Chem Phys ; 19(4): 3076-3083, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28079221

ABSTRACT

Optical extinction is a handy and ubiquitous technique that allows us to study colloidal nanoparticles in their native state. The typical analysis of the extinction spectrum can be extended in order to obtain structural information of the sample such as the size distribution of the cores and the thickness of the coating layers. In this work the extinction spectra of Fe3O4, Fe3O4@Au, and Fe3O4@SiO2@Au single and multilayer nanoparticles are obtained by solving full Mie theory with a frequency dependent susceptibility derived from the Gilbert equation and considering the effect of Eddy currents. The results are compared with non-magnetic Mie theory, magnetic dipolar approximation and magnetic Mie theory without Eddy currents. The particle size-wavelength ranges of validity of these different approaches are explored and novel results are obtained for Eddy current effects in optical extinction. These results are used to obtain particle size and shell thickness information from the experimental extinction spectra of Fe3O4 and Fe3O4@Au nanoparticles in good agreement with TEM results, and to predict the plasmon peak parameters for Fe3O4@SiO2@Au three layer nanoparticles.

7.
Appl Opt ; 46(1): 67-75, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17167556

ABSTRACT

Scattering is a useful tool for the determination of particle size in solution. In particular, spectroscopic analysis of backscattering renders the possibility of a simplified experimental setup and direct data processing using Mie theory. We show that a simple technique based on near-infrared (NIR) backscattering spectroscopy together with the development of the corresponding algorithm based on Fourier transform (FT) and Mie theory are a powerful tool for sizing microparticles in the range from 8 to 60 microm diameter. There are three wavelength intervals in the NIR, within which different diameter ranges were analyzed. In each one, the FT yields a coarse diameter value with an uncertainty dependent on the wavelength range. A more accurate value is obtained by further applying cross correlation between experimental and theoretical spectra. This latter step reduces the uncertainty in diameter determination between 30% and 40%, depending on wavelength interval and particle diameter. These results extend previous information on visible backscattering spectroscopy applied to sizing microparticles in the range between 1 and 24 mum diameter. This technique could be the basis for the construction of a portable and practical instrument.

8.
Appl Opt ; 42(6): 1029-35, 2003 Feb 20.
Article in English | MEDLINE | ID: mdl-12622052

ABSTRACT

The photothermal properties and heat diffusion of polymeric lasers, made up from solutions of Rhodamine 6G in solid matrices of poly(2-hydroxyethyl methacrylate) with different amounts of the cross-linking monomer ethylene glycol dimethacrylate and copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate have been studied through photothermal deflection spectroscopy. The heat load that is due to the pumping process was quantified as a function of the pump excitation repetition frequency (0.25-10 Hz), determining the time-dependent temperature changes at different locations within the laser matrix. A theoretical model, which reproduces these changes with high accuracy, was developed on the basis of the heat-diffusion equation of optically dense fluids. The observed thermal effects became important for impairing the laser stability at pump repetition frequencies higher than 1 Hz. In addition, the irreversible optical changes produced in the laser matrices at high pump fluence values (>1 J/cm2) were also analyzed. These effects originate, most likely, from a two-step photothermal mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...