Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570072

ABSTRACT

Mathematical modelling and software simulation nowadays are very effective tools for both understanding and predicting corrosion processes and the protection of metallic components. COMSOL Multiphysics 5.6 software provides validated mathematical models that can be used, for a given geometry, as a tool to predict and prevent corrosion of components. The corrosion of zinc-coated steel sheets has been studied in this work by comparing results of the simulations with laboratory tests carried out in a salt spray. Results of both the mathematical modelling and empirical tests give the possibility to estimate the stability of the protective zinc layer over time. The examination of the discrepancies between two analytical methods for the investigation of corrosion phenomena leads to possible modifications in the model in order to reach as much as possible coherence with experimental data. As a final result, a computational model of corrosion phenomena in an automotive component has been reached, allowing in the future to partially substitute laboratory tests, usually being highly time consuming and expensive.

2.
Materials (Basel) ; 16(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37444942

ABSTRACT

In this article, a high-performance nanostructured substrate has been fabricated for the ultrasensitive detection of the organic pollutant, Malachite green isothiocyanate (MGITC), in aquatic systems via the Surface Enhanced Raman Spectroscopy (SERS) technique. The chemical dealloying approach has been used to synthesize a three-dimensional nanoporous gold substrate (NPG) consisting of pores and multigrained ligament structures along thickness. The formation of the framework in NPG-5h has been confirmed by SEM with an average ligament size of 65 nm at the narrower neck. Remarkable SERS performance has been achieved by utilizing the NPG-5h substrate for the detection of MGITC, showing a signal enhancement of 7.9 × 109. The SERS substrate also demonstrated an impressively low-detection limit of 10-16 M. The presence of numerous active sites, as well as plasmonic hotspots on the nanoporous surface, can be accredited to the signal amplification via the Localized Surface Plasmon Resonance (LSPR) phenomenon. As a result, SERS detection technology with the fabricated-NPG substrate not only proves to be a simple and effective approach for detecting malachite green but also provides a basis for in situ detection approach of toxic chemicals in aquatic ecosystems.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770364

ABSTRACT

Dense and mesoporous FePd nanowires (NWs) with 45 to 60 at.% Pd content were successfully fabricated by template- and micelle-assisted pulsed potentiostatic electrodeposition using nanoporous anodic alumina and polycarbonate templates of varying pore sizes. An FePd electrolyte was utilized for obtaining dense NWs while a block copolymer, P-123, was added to this electrolyte as the micelle-forming surfactant to produce mesoporous NWs. The structural and magnetic properties of the NWs were investigated by electron microscopy, X-ray diffraction, and vibrating sample magnetometry. The as-prepared NWs were single phase with a face-centered cubic structure exhibiting 3.1 µm to 7.1 µm of length. Mesoporous NWs revealed a core-shell structure where the porosity was only witnessed in the internal volume of the NW while the outer surface remained non-porous. Magnetic measurements revealed that the samples displayed a soft ferromagnetic behavior that depended on the shape anisotropy and the interwire dipolar interactions. The mesoporous core and dense shell structure of the NWs were seen to be slightly affecting the magnetic properties. Moreover, mesoporous NWs performed excellently as SERS substrates for the detection of 4,4'-bipyridine, showing a low detection limit of 10-12 M. The signal enhancement can be attributed to the mesoporous morphology as well as the close proximity of the embedded NWs being conducive to localized surface plasmon resonance.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36770455

ABSTRACT

The connection of multidisciplinary and versatile techniques capable of depositing and modeling thin films in multistep complex fabrication processes offers different perspectives and additional degrees of freedom in the realization of patterned magnetic materials whose peculiar physical properties meet the specific needs of several applications. In this work, a fast and cost-effective dealloying process is combined with a fast, low-cost, scalable electroless deposition technique to realize hybrid magnetic heterostructures. The gold nanoporous surface obtained by the dealloying of an Au40Si20Cu28Ag7Pd5 ribbon is used as a nanostructured substrate for the electrodeposition of cobalt. In the first steps of the deposition, the Co atoms fill the gold pores and arrange themselves into a patterned thin film with harder magnetic properties; then they continue their growth into an upper layer with softer magnetic properties. The structural characterization of the hybrid magnetic heterostructures is performed using an X-ray diffraction technique and energy-dispersive X-ray spectroscopy, while the morphology of the samples as a function of the electrodeposition time is characterized by images taken in top and cross-section view using scanning electron microscopy. Then, the structural and morphologic features are correlated with the room-temperature magnetic properties deduced from an alternating-gradient magnetometer's measurements of the hysteresis loop and first order reversal curves.

5.
Materials (Basel) ; 15(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35629670

ABSTRACT

Nanoporous Au has been subjected to serial block face-scanning electron microscopy (SBF-SEM) 3D-characterisation. Corresponding sections have been digitalized and used to evaluate the associated mechanical properties. Our investigation demonstrates that the sample is homogeneous and isotropic. The effective Young's modulus estimated by an analytical multiscale approach agrees remarkably well with the values stated in the literature.

6.
Nanomaterials (Basel) ; 12(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35630960

ABSTRACT

In this study, nanoporous gold (NPG) was synthesized by free corrosion dealloying of an amorphous precursor, Au20Cu48Ag7Pd5Si20 (at. %), in a mixture of nitric and hydrofluoric acid, starting from amorphous melt-spun ribbons. NPG revealed a 3D nanoporous structure composed of pores and multigrain ligaments of an average size of 60 nm. NPG was further anodized in oxalic acid at 8 V vs. Ag/AgCl reference electrode to obtain a bimodal morphology composed of ligaments disrupted in finer features. Both NPG and anodized samples (A-NPG) were found to be mechanically stable to bending and active for surface-enhanced Raman scattering (SERS). SERS activity of samples was investigated using 4,4'-bipyridine as a probe molecule. A detection limit of 10-16 M was found for both samples, but in A-NPG, the signal was strongly enhanced. The extremely high enhancement obtained for A-NPG is attributed both to the small size of ligaments and crystals of which they are made, as well as to the nanometric features resulting from anodization treatment. Such a microstructure showed homogenous SERS response in terms of average enhancement all across the surface, as demonstrated by mapping measurements. Furthermore, NPG and A-NPG were tested as electrodes for electrocatalytic applications, showing good properties. The engineering steps from the amorphous precursor to A-NPG led us to obtain a high-sensing platform, with extremely low detection limit and intrinsic properties, that might significantly contribute to the cutting-edge technology of the future.

7.
Nanomaterials (Basel) ; 13(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36616045

ABSTRACT

Fe and Pd thin film samples have been fabricated in a rapid fashion utilizing the versatile technique of dynamic hydrogen bubble template (DHBT) method via potentiostatic electrodeposition over a copper substrate. The morphology of the samples is dendritic, with the composition being directly proportional to the deposition time. All the samples have been tested as SERS substrates for the detection of Rhodamine 6G (R6G) dye. The samples perform very well, with the best performance shown by the Pd samples. The lowest detectable R6G concentration was found to be 10-6 M (479 µgL-1) by one of the Pd samples with the deposition time of 180 s. The highest enhancement of signals noticed in this sample can be attributed to its morphology, which is more nanostructured compared to other samples, which is extremely conducive to the phenomenon of localized surface plasmon resonance (LSPR). Overall, these samples are cheaper, easy to prepare with a rapid fabrication method, and show appreciable SERS performance.

8.
Nanomaterials (Basel) ; 11(5)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067564

ABSTRACT

Characterized by a large surface area to volume ratio, nanostructured metal oxides possess unique chemical and physical properties with applications in electronics, catalysis, sensors, etc. In this study, Mo3Al8, an intermetallic compound, has been used as a precursor to obtain nanostructured molybdenum oxides. It was prepared into ribbons by arc-melting and melt-spinning techniques. Single and double-step free corrosion of the as-quenched material have been studied in 1 M KOH, 1 M HF and 1.25 M FeCl3 at room temperature. In both cases, nanostructured molybdenum oxides were obtained on a surface layer a few microns thick. Two of the as-prepared samples were tested for their electrocatalytic capability for hydrogen evolution reaction (HER) in 0.5 M H2SO4 giving low onset potential (-50 mV, -45 mV), small Tafel slopes (92 mV dec-1, 9 mV dec-1) and high exchange current densities (0.08 mA cm-2, 0.35 mA cm-2 respectively). The proposed nanostructured molybdenum oxides are cost-effective and sustainable due to the cheap and abundant starting material used and the simple synthetic route, paving the way for their possible application as HER electrocatalysts.

9.
Materials (Basel) ; 13(6)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210008

ABSTRACT

Bimetallic nanomaterials in the form of thin film constituted by magnetic and noble elements show promising properties in different application fields such as catalysts and magnetic driven applications. In order to tailor the chemical and physical properties of these alloys to meet the applications requirements, it is of great importance scientific interest to study the interplay between properties and morphology, surface properties, microstructure, spatial confinement and magnetic features. In this manuscript, FePd thin films are prepared by electrodeposition which is a versatile and widely used technique. Compositional, morphological, surface and magnetic properties are described as a function of deposition time (i.e., film thickness). Chemical etching in hydrochloric acid was used to enhance the surface roughness and help decoupling crystalline grains with direct consequences on to the magnetic properties. X-ray diffraction, SEM/AFM images, contact angle and magnetic measurements have been carried out with the aim of providing a comprehensive characterisation of the fundamental properties of these bimetallic thin films.

SELECTION OF CITATIONS
SEARCH DETAIL
...