Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 021704, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19792143

ABSTRACT

The theory of the absorbance of a semi-infinite medium characterized by a second-rank dielectric tensor for the entire electromagnetic spectrum, as given by Scaife and Vij [J. Chem. Phys. 122, 174901 (2005)], is extended to include molecules of prolate spheriodal shape with longitudinal and transverse polarizabilities and to cover the case of elliptically polarized incident radiation. The theory is applied to the infrared transmission experiments of biaxial liquid crystals. It is found that the formula for the dependence on frequency and on angle of polarization of the absorbance A(omega,theta)= -log(10)[10(A(omega,0)) cos(2) theta + (10(-A(omega,pi/2)) sin(2) theta)] is unaffected by the anisotropy of the molecules and by the elliptical polarization of the incident radiation. A small (+/-5%) discrepancy between theory and experiment has been found for bands with high absorbances. It is found that this discrepancy does not depend on birefringence of the sample but may depend on the precise method of absorbance measurement and on effects at the surface of the cell containing the liquid crystal under test.

2.
J Chem Phys ; 122(17): 174901, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15910063

ABSTRACT

The theory of absorbance is developed for the entire electromagnetic spectrum of radiation in a semi-infinite anisotropic medium with a second rank dielectric tensor, the elements of which are complex and frequency dependent. The theory of the absorbance A(omega,theta) of an optically anisotropic liquid in an infrared (IR) test cell is then outlined and applied to IR transmission experiments. A formula for the dependence of A(omega,theta), on theta (theta being the angle between the electric vector and the principal optical axis) is derived from first principles. The formula, for radiation of angular frequency omega, viz, A(omega,theta)=-log(10)[10(-A(omega,0))cos(2)theta+10(-A(omega,pi2))sin(2)theta] is in agreement with that proposed by Jang, Park, Maclennan, Kim, and Clark [Ferroelectrics 180, 213 (1996) ] and confirms some of the work of Kocot, Wrzalik, and Vij [Liq. Cryst. 21, 147 (1996)]. The comments on this formula by Jang, Park, Kim, Glaser, and Clark [Phys. Rev. E 62, 5027 (2000)], and by Kocot et al. are discussed. The absorbance A(omega,0) and A(omega,pi2) have been expressed in terms of the optical properties of the material and the dimensions of the cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...