Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 418: 126291, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34116275

ABSTRACT

Environmental risks connected with the combustion of paper/cardboard briquettes are still not sufficiently known. This paper aims to bring attention to the risks related to the utilisation of paper briquettes in local boilers and to characterise these risks by means of the identification of organic compounds in deposits from exhaust flues. The identification of the chemical compounds was performed by pyrolysis gas chromatography with mass spectrometric detection. Paper/cardboard briquettes contain 119 compounds of biogenic origin derived from major biomass components and 53 additives. Additives are used both for improving the properties of paper and in printing inks. By burning the paper briquettes, the same 53 compounds from the additive group were caught in the deposits from the flue gas pathway, occurring in the range of 1-10% of the concentration of individual compounds (additives) contained in the input fuel. Compounds that are very stable during the combustion process have an enrichment factor (EF) >30, which corresponded to approximately 3% of the additive capture in deposits. The highest values were found for plasticisers (phthalates). Many of the primary organic compounds contained in the input raw material do not decompose during combustion and can have adverse effects on human health.


Subject(s)
Organic Chemicals , Biomass , Gas Chromatography-Mass Spectrometry , Humans , Organic Chemicals/toxicity
2.
J Hazard Mater ; 152(2): 616-23, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-17703878

ABSTRACT

Mercury emissions from coal combustion must be reduced, in response to new air quality regulations in the U.S. Although the most mature control technology is adsorption across a dust cake of powdered sorbent in a fabric filter (FF), most particulate control in the U.S. associated with coal combustion takes the form of electrostatic precipitation (ESP). Using recently developed models of mercury adsorption within an ESP and within a growing sorbent bed in a FF, parallel analyses of elemental mercury (Hg(0)) uptake have been conducted. The results show little difference between an ESP and a FF in absolute mercury removal for a low-capacity sorbent, with a high-capacity sorbent achieving better performance in the FF. Comparisons of fractional mercury uptake per-unit-pressure-drop provide a means for incorporating and comparing the impact of the much greater pressure drop of a FF as compared to an ESP. On a per-unit-pressure-drop basis, mercury uptake within an ESP exhibited better performance, particularly for the low-capacity sorbent and high mass loadings of both sorbents.


Subject(s)
Air Pollutants/isolation & purification , Coal , Incineration , Mercury/isolation & purification , Power Plants , Adsorption , Filtration/instrumentation , Static Electricity
3.
J Air Waste Manag Assoc ; 55(1): 20-9, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15704537

ABSTRACT

An experimental investigation on sulfur dioxide removal in a pilot-scale spray dryer from the flue gas generated by combustion of low-sulfur (S) heavy oil is reported. A limewater slurry was sprayed through an ultrasonic two-fluid atomizer in the spray-dry chamber, and the spent sorbent was collected downstream in a pulse-jet baghouse together with fly ash. Flue gas was sampled at different points to measure the desulfurization efficiency after both the spray-dry chamber and the baghouse. Parametric tests were performed to study the effect of the following variables: gas inlet temperature, difference between gas outlet temperature and adiabatic saturation temperature, lime-to-S ratio, and average size of lime particles in the slurry. Results indicated that spray drying is an effective technology for the desulfurization of low-S fuel oil flue gas, provided operating conditions are chosen carefully. In particular, the lowest gas inlet and outlet temperatures compatible with baghouse operation should be selected, as should a sufficiently high lime-to-S ratio. The attainment of a small lime particle size in the slurry is critical for obtaining a high desulfurization efficiency. A previously presented spray-dry flue gas desulfurization model was used to simulate the pilot-scale desulfurization tests, to check the ability of the model to predict the S capture data and its usefulness as a design tool, minimizing the need for pilot-scale experimentation. Comparison between model and experimental results was fairly good for the whole range of calcium/S ratios considered.


Subject(s)
Air Pollutants/isolation & purification , Carbon , Models, Theoretical , Sulfur Dioxide/isolation & purification , Air Movements , Air Pollutants/chemistry , Coal Ash , Gases , Incineration , Particulate Matter , Petroleum , Sulfur Dioxide/chemistry , Temperature , Ultrasonics
SELECTION OF CITATIONS
SEARCH DETAIL
...