Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38254460

ABSTRACT

Chlamydia abortus, although poorly recognized as a human pathogen, is a zoonotic microorganism that can cause many different symptoms in humans, including subclinical infection and fatal illnesses in pregnant women. C. abortus is one of the most common causes of ovine and caprine infectious abortion worldwide, known as the causative agent of the enzootic abortion of ewes (EAE) or ovine enzootic abortion (OEA). To estimate C. abortus seroprevalence and the risk factors related to C. abortus in small ruminants, the sera from 3045 animals (both sheep and goat) belonging to 202 herds were tested and a questionnaire investigating flock management was administered. At the herd level, the true seroprevalence was 56.6% (CI95%: 46.9-66.3%), at sheep-farm and goat-farm level, the true seroprevalence was 71.4% (CI95%: 54.6-88.3%) and 44.8% (CI95%: 41.3-57.0%), respectively. The true seroprevalence was significantly higher among the sheep than the goats. The logistic regression model identified four factors associated with Chlamydia seropositivity: flock size (i.e., farms with >50 heads), contact with cattle, introduction of animals, and Coxiella seropositivity. The study evidenced a high seroprevalence of Chlamydia abortus in small ruminant farms in the Piedmont region. Considering its zoonotic potential and the health consequences in humans, communication to farmers on the importance of vaccination, as well as the sensibilization of farm vets, seem to be strategical.

2.
Proteins ; 65(2): 490-8, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16909420

ABSTRACT

The Root effect is a widespread property in fish hemoglobins (Hbs) that produces a drastic reduction of cooperativity and oxygen-binding ability at acidic pH. Here, we report the high-resolution structure of the deoxy form of Hb isolated from the Antarctic fish Trematomus bernacchii (HbTb) crystallized at pH 6.2 and 8.4. The structure at acidic pH has been previously determined at a moderate resolution (Ito et al., J Mol Biol 1995;250:648-658). Our results provide a clear picture of the events occurring upon the pH increase from 6.2 to 8.4, observed within a practically unchanged crystal environment. In particular, at pH 8.4, the interaspartic hydrogen bond at the alpha(1)beta(2) interface is partially broken, suggesting a pK(a) close to 8.4 for Asp95alpha. In addition, a detailed survey of the histidine modifications, caused by the change in pH, also indicates that at least three hot regions of the molecule are modified (Ebeta helix, Cbeta-tail, CDalpha corner) and can be considered to be involved at various levels in the release of the Root protons. Most importantly, at the CDalpha corner, the break of the salt bridge Asp48alpha-His55alpha allows us to describe a detailed mechanism that transmits the modification from the CDalpha corner far to the alpha heme. More generally, the results shed light on the role played by the histidine residues in modulating the strength of the Root effect and also support the emerging idea that the structural determinants, at least for a part of the Root effect, are specific of each Hb endowed with this property.


Subject(s)
Hemoglobins/chemistry , Hemoglobins/metabolism , Histidine/metabolism , Perciformes/metabolism , Amino Acid Motifs , Animals , Crystallography, X-Ray , Hydrogen-Ion Concentration , Models, Molecular , Perciformes/genetics , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...