Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Molecules ; 29(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125049

ABSTRACT

According to their nutritional value, their ability to adapt to the various environmental conditions, and their versatility, cereals are among the most cultivated plants in the world. However, the ongoing climate changes subject crops to important environmental stress that for some varieties leads to high production losses. Therefore, the selection of species and varieties that are more versatile and adaptable to different environmental conditions can be important. However, the characteristics of some cereals are not completely known; this is a priority before aiming to improve their cultivation. The aim of this study is to characterize select species that are potentially suitable for local environmental conditions and that possess nutritional value. The elemental composition was assessed in different cereal species grown following intensive and organic agriculture practices. Six species were grown for this study with techniques of intensive agriculture: Triticum monococcum L., Triticum dicoccum L., Triticum aestivum L., variety Verna, Triticum durum Desf., variety Senatore Cappelli, Triticum durum Desf., variety Claudio, and Avena strigosa Schreb.; four of these were also grown following organic procedures: Triticum monococcum L., Triticum dicoccum L., Triticum aestivum L., variety Verna, and Triticum durum Desf., variety Senatore Cappelli. The study considered twenty elements, including major nutrients (Ca, K, Mg, P, and S), seven micronutrients (B, Cu, Fe, Mn, Mo, Se, and Zn), and trace elements with toxic properties (Al, Ba, Cd, Cr, Na, Rb, Sc, and Sr) that can be accumulated at the seed level. The results highlight the differences in the element concentrations in the cereal seeds in relation to the genus and species; the highest concentrations of the major nutrients appeared in T. monococcum; the concentrations were 6.9, 2.09, 7.2, and 2.9 mg/g for K, Mg, P, and S, respectively. The highest concentrations of certain micronutrients, B, Ca, Mo, and Se (16, 785, 3.69, and 0.34 µg/g), were in A. strigosa. There is also evidence that the element content can be affected by the adopted cultivation procedure; however, the effects of the growing procedure can be significantly different when different species are considered. T. monococcum, grown by an organic procedure, presented lower concentrations of the major nutrients, while it demonstrated a modest increase in the micronutrients in the T. durum variety organic S. Cappelli, and the production procedure did not affect the elemental composition of the T. aestivum variety Verna. The survey also highlights that the studied species and the growing procedure affected the capacity to accumulate and translocate trace hazardous elements for human health at the seed level.


Subject(s)
Edible Grain , Triticum , Edible Grain/chemistry , Triticum/chemistry , Organic Agriculture , Nutritive Value , Trace Elements/analysis , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development
2.
J Hazard Mater ; 472: 134484, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723484

ABSTRACT

To quantify the possible impact of different wood protection techniques on the aquatic environment, we applied a tiered Integrated Testing Strategy (ITS) on leachates obtained from untreated (UTW) Norway spruce (Picea abies), specimens treated with a copper-ethanolamine-based preservative solution, complying with the Use Class 3 (UC3), and specimens thermally modified (TM). Different maturation times in water were tested to verify whether toxicant leaching is time-dependent. Tier I tests, addressing acute effects on Aliivibrio fischeri, Raphidocelis subcapitata, and Daphnia magna, evidenced that TM toxicity was comparable or even lower than in UTW. Conversely, UC3 significantly affected all species compared to UTW, also after 30 days of maturation in water, and was not considered an environmentally acceptable wood preservation solution. Tier II (effects on early-life stages of Lymnea auricularia) and III (chronic effects on D. magna and L. auricularia) performed on UTW and TM confirmed the latter as an environmentally acceptable treatment, with increasing maturation times resulting in decreased adverse effects. The ITS allowed for rapid and reliable identification of potentially harmful effects due to preservation treatments, addressed the choice for a less impacting solution, and can be effective for manufacturers in identifying more environmentally friendly solutions while developing their products.


Subject(s)
Aliivibrio fischeri , Daphnia , Picea , Wood , Wood/chemistry , Daphnia/drug effects , Aliivibrio fischeri/drug effects , Animals , Picea/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Copper/toxicity , Copper/chemistry , Ethanolamine/toxicity , Ethanolamine/chemistry , Chlorophyta/drug effects , Chlorophyta/growth & development
3.
Chemosphere ; 357: 142073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641289

ABSTRACT

Open biomass burning (BB) events are a well-known primary aerosol source, resulting in the emission of significant amount of gaseous and particulate matter and affecting Earth's radiation budget. The 2019-2020 summer, known as "Australian Black Summer", showed exceptional duration and intensity of seasonal wildfires, triggered by high temperatures and severe droughts. Since increasing megafires are predicted due to expected climate changes, it is critical to study the impact of BB aerosol on a large scale and evaluate related transport processes. In this study, five aerosol samples (total suspended particles with a diameter >1 µm) were collected during the XXXV Italian Expedition in Antarctica on board of the R/V Laura Bassi from 6th of January to February 16, 2020, along the sailing route from Lyttelton harbor (New Zealand) to Terra Nova Bay (Antarctica). Levoglucosan and its isomers have been analyzed as markers of BB, together with polycyclic aromatic hydrocarbons (PAHs), sucrose and alcohol sugars. Ionic species and carboxylic acids have been analyzed to support the identification of aerosol sources and its aging. Results showed high levoglucosan concentrations (325-1266 pg m-3) during the campaign, suggesting the widespread presence of smoke in the region, because of huge wildfire releases. Backward trajectories indicated the presence of long-range atmospheric transport from South America, probably carrying wildfires plume, in agreement with literature. Regional sources have been suggested for PAHs, particularly for 3-4 rings' compounds; monosaccharides, sucrose, arabitol, and mannitol were related to marine and biogenic contributions. In a warming climate scenario, more frequent and extensive wildfire episodes are expected in Australia, potentially altering albedo, aerosol radiative properties, and cloud interactions. Therefore, it is crucial to strengthens the investigations on the regional climatic effects of these events in Antarctica.


Subject(s)
Aerosols , Air Pollutants , Environmental Monitoring , Glucose/analogs & derivatives , Seasons , Smoke , Wildfires , Aerosols/analysis , Antarctic Regions , Air Pollutants/analysis , Smoke/analysis , New Zealand , Polycyclic Aromatic Hydrocarbons/analysis , Australia , Particulate Matter/analysis , Biomass , Climate Change
4.
PLoS One ; 19(3): e0299981, 2024.
Article in English | MEDLINE | ID: mdl-38512945

ABSTRACT

Agricultural diversification and high-quality products deriving from sustainable crops such as hemp can represent a solution to revitalize marginal areas and reverse land abandonment. This study aimed at comparing four different hemp cultivars (Carmagnola Selezionata, "CS"; Futura 75, "FUT"; Felina 32, "FEL"; Secuieni Jubileu, "JUB") to provide information to select the best suited cultivar for cultivation in mountain marginal areas and for specific end-use applications. Hemp cultivars were cultivated in a single experimental field to compare their ecological and agronomic behavior (duration of life cycle phases, plant size and biomass allocation, and plant resource-use strategies). Through metabolomic analysis of both vegetative and reproductive parts of the plants we tested the presence of substances of nutraceutical interest and traced seed nutritional profile. The four cultivars had different ecological and agronomic behavior, and nutritional profile. We found several compounds with potential pharmaceutical and nutraceutical values in all parts of the plant (leaves, inflorescences, and stems). JUB resulted the most suitable for seed production while CS showed the highest content of bioactive compounds in flowers and leaves. FUT, showed the best suitability for multi-purpose cultivation, while FEL seemed to be not appropriate for the cultivation in mountain area. The multi-disciplinary approach we adopted was effective in distinguish across hemp cultivars and provided information to farmers for the selection of the best hemp cultivar to select. Hemp had a high potential for cultivation in marginal lands, demonstrating to be an economic resource due to its multi-purpose use and to the possibility to generate high-added values products. Our results could serve as a stimulus for the reintroduction of this culture in the study area and in other similar environments.


Subject(s)
Cannabis , Flowers , Inflorescence , Dietary Supplements , Plant Leaves
5.
Foods ; 11(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36010441

ABSTRACT

Honey is a natural sweetener constituted by numerous macro- and micronutrients. Carbohydrates are the most representative, with glucose and fructose being the most abundant. Minor honey components like volatile organic compounds (VOCs), minerals, vitamins, amino acids are able to confer honey-specific properties and are useful to characterize and differentiate between honey varieties according to the botanical origin. The present work describes the chemical characterization of honeys of different botanical origin (multifloral, acacia, apple-dandelion, rhododendron, honeydew, and chestnut) produced and collected by beekeepers in the Trentino Alto-Adige region (Italy). Melissopalynological analysis was conducted to verify the botanical origin of samples and determine the frequency of different pollen families. The carbohydrate composition (fourteen sugars) and the profile of VOCs were evaluated permitting to investigate the relationship between pollen composition and the chemical profile of honey. Statistical analysis, particularly partial least squares discriminant analysis (PLS-DA), demonstrates the importance of classifying honey botanical origin on the basis of effective pollen composition, which directly influences honey's biochemistry, in order to correctly define properties and value of honeys.

6.
Metabolites ; 10(8)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751065

ABSTRACT

Abiotic stresses are major factors that negatively affect plant growth and productivity. Plants have developed complex strategies to ensure their survival and reproduction under adverse conditions, activating mechanisms that involve changes at different metabolic levels. In order to select stress-resistant species, research has focused on molecular studies and genetic engineering, showing promising results. In this work, the insertion of the rolD gene from Agrobacterium rhizogenes into Nicotiana langsdorffii plants is investigated, in order to assess the potential of this genetic modification towards mitigating water and heat stresses. Different approaches were combined: a high-throughput metabolomics and ionomics study was performed, together with the determination of important plant phytohormones. The aim was to identify the influence of abiotic stresses on plants and to highlight the effects of the rolD genetic modification on plant stress response. The most relevant compounds for each kind of stress were identified, belonging mainly to the classes of lipids, acyl sugars, glycosides, and amino acid derivatives. Water stress (WS) determined a decrease of elements and secondary metabolites, while amino acids and their derivatives increased, proving to be key molecules in this type of stress. RolD plants exposed to high temperature stress (HS) presented higher dry weight levels than controls, as well as increased amounts of K and adenosine and lower levels of damage-associated metabolites, suggesting the increased resistance of rolD-modified plants toward HS.

7.
Molecules ; 24(17)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484411

ABSTRACT

Dissolved organic matter (DOM) plays an important role in the environment by influencing the transport and distribution of organic and inorganic components through different processes: the retention, mobilization, and bio-availability of potentially toxic elements (PTEs). The aim of the present study is to examine the dimensional characterization of humic acids (HA) extracted from soil matrix, as well as to analyze the metal distribution among different ligand classes. The molecular size distribution of the HA extract from soil showed three dimensional classes: 52 KDa, 4.5 KDa, and 900 Da. HPSEC-ICP-MS measurements demonstrated that the dimensional classes, relative to first two fractions, bind the largest part of metals. The complexing capacity of HA was evaluated to assess the pollutants mobility in the environmental system. In particular, cadmium (Cd) and copper (Cu) complexation was investigated due to the great concern regarding their bio-availability and toxicity in natural waters. The complexing capacity of HA solution (20 mg/L) was measured by titration using a high-performance size exclusion chromatography (HP-SEC) coupled to an inductively coupled mass spectrometry (ICP-MS). Results obtained by this technique are compared with those obtained by anodic stripping voltammetry (ASV) to investigate the effects of kinetic lability of complexes on measurements carried by HPSEC-ICP-MS. In this study, results of ligand concentrations and stability constants obtained via the two techniques are assessed considering the detection window associated to the applied analytical methodology. Results obtained using the two analytical techniques showed that Cd is complexed by two classes of ligands. However, the ligand concentration values obtained using the two techniques are different, because the detection window associated to the two methodologies; the complexing capacity, which was obtained as sum of the two classes of ligands, were 33 nmol/L and 9 nmol/L for ASV and HPSEC-ICP-MS, respectively. The copper complexing capacities determined by the two methodologies are comparable: 166 and 139 nmol/L for ASV and HPSEC-ICP-MS, respectively. However, the results of Cu titration differ for the two techniques, highlighting only one class of ligands when ASV was used, and two classes when HPSEC-ICP-MS was employed. Differences on results obtained by the two techniques are explained considering the kinetic lability of complexes; the results show that, differently from previous studies, also Cu complexes can be kinetically labile, if one technique with high reaction time is used, as well some cadmium complexes are sufficient stable to be determined by HPSEC-ICP-MS.


Subject(s)
Cadmium/chemistry , Chromatography, Gel/methods , Copper/chemistry , Chromatography, High Pressure Liquid , Humic Substances , Mass Spectrometry
8.
Chemosphere ; 219: 896-913, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30572239

ABSTRACT

Mercury (Hg) is a widespread, highly toxic persistent pollutant with adverse health effects on humans. So far, concentrations below the method detection limit have always been reported by studies on the concentration of mercury in bottled water when determined using instrumental analytical methods. These are often very expensive and are unaffordable for many laboratories. In this work, a less expensive method based on cold vapour atomic fluorescence spectrometry has been employed to determine total mercury (HgT) concentrations in bottled natural mineral waters. In all, 255 waters representing 164 different typologies were analysed. They came from 136 springs located in 18 Italian regions. In all samples, HgT concentrations were found in the range of sub-nanogram to a few nanograms per litre, well below the National and European regulatory limit (1 µg L-1). Differences in HgT concentrations were related not only to the environmental characteristics of the springs but also to the extent and impact of human activities. Higher concentrations were found in waters coming from regions with former mining and/or natural thermal and volcanic activity. These data allowed us to estimate the mercury intake by population (adults, children and toddlers) from drinkable mineral waters consumption. The mean mercury daily intake was found to be remarkably lower, not only than the provisional tolerable value (1 µg L-1 according to European and Italian legislation) but also than the estimated provisional tolerable weekly intake (PTWI) value (4 µg kg-1 body weight) recommended by the Joint FAO/WHO Expert Committee on Food Additives (JECFA).


Subject(s)
Drinking Water/chemistry , Environmental Pollutants/chemistry , Food Contamination/analysis , Mercury/chemistry , Humans , Italy
9.
Food Chem ; 221: 959-968, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-27979300

ABSTRACT

The roots and rhizomes of licorice plants (genus Glycyrrhiza L.) are commercially employed, after processing, in confectionery production or as sweetening and flavouring agents in the food, tobacco and beer industries. G. glabra, G. inflata and G. uralensis are the most significant licorice species, often indistinctly used for different productions. Licorice properties are directly related to its chemical composition, which determines the commercial values and the quality of the derived products. In order to better understand the characteristics and properties of each species, a chemical characterization of three species of licorice (G. glabra, G. inflata, G. uralensis) is proposed, through an untargeted metabolomic approach and using high-resolution mass spectrometry. The statistical analysis reveals new possible markers for the analyzed species, and provides a reliable identification of a high number of metabolites, contributing to the characterization of Glycyrrhiza metabolome.


Subject(s)
Glycyrrhiza/metabolism , Metabolome , Plant Roots/metabolism , Mass Spectrometry
10.
Sci Total Environ ; 571: 1441-53, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27450960

ABSTRACT

Biomass burning and primary biological aerosol particles (PBAPs) represent important primary sources of organic compounds in the atmosphere. These particles and compounds are able to affect climate and human health. In the present work, using HPLC-orbitrapMS, we determined the atmospheric concentrations of molecular markers such as anhydrosugars and phenolic compounds that are specific for biomass burning, as well as the concentrations of sugars, alcohol sugars and d- and l-amino acids (D-AAs and L-AAs) for studying PBAPs in Belgrade (Serbia) aerosols collected in September-December 2008. In these samples, high levels of all these biomarkers were observed in October. Relative percentages of vanillic (V), syringic compounds (S) and p-coumaric acid (PA), as well as levoglucosan/mannosan (L/M) ratios, helped us discriminate between open fire events and wood combustion for domestic heating during the winter. L-AAs and D-AAs (1% of the total) were observed in Belgrade aerosols mainly in September-October. During open fire events, mean D-AA/L-AA (D/L) ratio values of aspartic acid, threonine, phenylalanine, alanine were significantly higher than mean D/L values of samples unaffected by open fire. High levels of AAs were observed for open biomass burning events. Thanks to four different statistical approaches, we demonstrated that Belgrade aerosols are affected by five sources: a natural source, a source related to fungi spores and degraded material and three other sources linked to biomass burning: biomass combustion in open fields, the combustion of grass and agricultural waste and the combustion of biomass in stoves and industrial plants. The approach employed in this work, involving the determination of specific organic tracers and statistical analysis, proved useful to discriminate among different types of biomass burning events.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Atmosphere/analysis , Organic Chemicals/analysis , Particulate Matter/analysis , Chromatography, High Pressure Liquid , Cities , Environmental Monitoring , Models, Statistical , Serbia
11.
Plant Physiol Biochem ; 103: 53-60, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26966898

ABSTRACT

The presence and relative concentration of phytohormones may be regarded as a good indicator of an organism's physiological state. The integration of the rolC gene from Agrobacterium rhizogenes and of the rat glucocorticoid receptor (gr) in Nicotiana langsdorffii Weinmann plants has shown to determine various physiological and metabolic effects. The analysis of wild and transgenic N. langsdorffii plants, exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations) was conducted, in order to investigate the metabolic effects of the inserted genes in response to the applied stresses. The development of a new analytical procedure was necessary, in order to assure the simultaneous determination of analytes and to obtain an adequately low limit of quantification. For the first time, a sensitive HPLC-HRMS quantitative method for the simultaneous determination of salicylic acid, jasmonic acid and shikimic acid was developed and validated. The method was applied to 80 plant samples, permitting the evaluation of plant stress responses and highlighting some metabolic mechanisms. Salicylic, jasmonic and shikimic acids proved to be suitable for the comprehension of plant stress responses. Chemical and heat stresses showed to induce the highest changes in plant hormonal status, differently affecting plant response. The potential of each genetic modification toward the applied stresses was marked and particularly the resistance of the gr modified plants was evidenced. This work provides new information in the study of N. langsdorffii and transgenic organisms, which could be useful for the further application of these transgenes.


Subject(s)
Chromium/pharmacology , Cyclopentanes/analysis , Nicotiana/chemistry , Oxylipins/analysis , Plant Growth Regulators/analysis , Salicylic Acid/analysis , Shikimic Acid/analysis , Agrobacterium/genetics , Animals , Bacterial Proteins/genetics , Cyclopentanes/metabolism , Dehydration , Hot Temperature , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plants, Genetically Modified , Rats , Receptors, Glucocorticoid/genetics , Salicylic Acid/metabolism , Shikimic Acid/metabolism , Stress, Physiological , Nicotiana/drug effects , Nicotiana/physiology , Transgenes , Water/physiology
12.
Anal Bioanal Chem ; 407(21): 6357-68, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26014284

ABSTRACT

Nicotiana langsdorffii plants, wild and transgenic for the Agrobacterium rhizogenes rol C gene and the rat glucocorticoid receptor (GR) gene, were exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations). An untargeted metabolomic analysis was carried out in order to investigate the metabolic effects of the inserted genes in response to the applied stresses and to obtain a comprehensive profiling of metabolites induced during abiotic stresses. High-performance liquid chromatography separation (HPLC) coupled to high-resolution mass spectrometry (HRMS) enabled the identification of more than 200 metabolites, and statistical analysis highlighted the most relevant compounds for each plant treatment. The plants exposed to heat stress showed a unique set of induced secondary metabolites, some of which were known while others were not previously reported for this kind of stress; significant changes were observed especially in lipid composition. The role of trichome, as a protection against heat stress, is here suggested by the induction of both acylsugars and glykoalkaloids. Water deficit and Cr(VI) stresses resulted mainly in enhanced antioxidant (HCAs, polyamine) levels and in the damage of lipids, probably as a consequence of reactive oxygen species (ROS) production. Moreover, the ability of rol C expression to prevent oxidative burst was confirmed. The results highlighted a clear influence of GR modification on plant stress response, especially to water deficiency-a phenomenon whose applications should be further investigated. This study provides new insights into the field of system biology and demonstrates the importance of metabolomics in the study of plant functioning. Graphical Abstract Untargeted metabolomic analysis was applied to wild type, GR and RolC modified Nicotiana Langsdorffii plants exposed to heat, water and Cr(VI) stresses. The key metabolites, highly affected by stress application, were identified, allowing to outline the main metabolic responses to stress in each plant genotype.


Subject(s)
Metabolomics , Nicotiana/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological , Chromium , Hot Temperature , Plants, Genetically Modified/growth & development , Nicotiana/growth & development , Water
SELECTION OF CITATIONS
SEARCH DETAIL