Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 53(17): 6924-9, 2005 Aug 24.
Article in English | MEDLINE | ID: mdl-16104822

ABSTRACT

Ochratoxin A (OTA), is a nephrotoxic mycotoxin present in wine, which is nephrotoxic in humans. Our working hypothesis is that natural substances in wine may counteract OTA toxicity. Thirty-six rats were randomized to OTA dissolved in saline, red wine, or 13.5% ethanol or to OTA-free wine, ethanol, or saline. OTA (289 microg/kg of body weight/48 h) was administered by gastric gavage for 2 weeks. Serum creatinine, tubular enzymuria, renal lipohydroperoxides (LOOH), reduced (GSH) and oxidized (GSSG) glutathione, and renal superoxide dismutase activity (SOD) were determined in renal tissue. OTA alone produced significant increases in renal lipoperoxides and significant decreases in SOD and GSH/GSSG ratio. In red wine or ethanol, OTA was less nephrotoxic, reducing oxidative damage as revealed by LOOH. In OTA-wine and OTA-ethanol groups, SOD activity was higher than in the OTA-treated one, suggesting that both ethanol and nonalcoholic fractions may preserve antioxidant reserve. GSH/GSSG ratio was significantly preserved only in the OTA-wine group and not in OTA-ethanol. Red wine may exert a protective effect against OTA nephrotoxicity by limiting oxidative damage. The ostensible protection afforded by ethanol deserves further investigation.


Subject(s)
Ethanol/pharmacology , Kidney Diseases/chemically induced , Ochratoxins/toxicity , Wine , Acute Disease , Animals , Glutathione/analysis , Glutathione/chemistry , Kidney/chemistry , Kidney/ultrastructure , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Tubules/ultrastructure , Lipid Peroxides/analysis , Male , Microscopy, Electron , Oxidation-Reduction , Rats , Rats, Wistar , Superoxide Dismutase/analysis
2.
Ann N Y Acad Sci ; 844(1): 166-177, 1998 May.
Article in English | MEDLINE | ID: mdl-29090815

ABSTRACT

Noradrenergic (NE) neurons belonging to the locus coeruleus (LC), much more than the A1 and A2 NE areas, are lost in Parkinson's disease (PD). In this study, we reproduced the selective pattern of NE loss involving axons arising from the LC using the selective neurotoxin N-(-2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) (50 mg/kg). In these experimental conditions, we investigated whether NE loss potentiates methamphetamine-induced striatal dopamine (DA) depletion in mice and in rats. Administration of a moderate dose of methamphetamine to C57B1/6N mice or Sprague-Dawley rats produced only a partial striatal DA depletion 7 days after drug administration. Pretreatment with DSP-4, in both animal species, significantly enhanced methamphetamine-induced striatal DA depletion. Administration of a lower dose of methamphetamine did not decrease striatal DA levels when injected alone, but produced a significant decrease in striatal DA when given to DSP-4-pretreated rodents. Moreover, we found that agents reducing the noradrenergic activity (i.e., the alpha-2 agonist clonidine) enhanced, whereas alpha-2 antagonists decreased, methamphetamine toxicity. Enhancement of methamphetamine toxicity did not occur if the noradrenergic lesion was produced 12 hr after methamphetamine administration. By contrast, exacerbation of methamphetamine toxicity in NE-depleted animals was accompanied by increased extracellular DA levels measured with brain dialysis and by a more severe acute DA depletion measured in striatal homogenates.

SELECTION OF CITATIONS
SEARCH DETAIL
...