Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 22(1): 204, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33757428

ABSTRACT

BACKGROUND: Variation in locomotor capacity among animals often reflects adaptations to different environments. Despite evidence that physical performance is heritable, the molecular basis of locomotor performance and performance trade-offs remains poorly understood. In this study we identify the genes, signaling pathways, and regulatory processes possibly responsible for the trade-off between burst performance and endurance observed in Xenopus allofraseri, using a transcriptomic approach. RESULTS: We obtained a total of about 121 million paired-end reads from Illumina RNA sequencing and analyzed 218,541 transcripts obtained from a de novo assembly. We identified 109 transcripts with a significant differential expression between endurant and burst performant individuals (FDR ≤ 0.05 and logFC ≥2), and blast searches resulted in 103 protein-coding genes. We found major differences between endurant and burst-performant individuals in the expression of genes involved in the polymerization and ATPase activity of actin filaments, cellular trafficking, proteoglycans and extracellular proteins secreted, lipid metabolism, mitochondrial activity and regulators of signaling cascades. Remarkably, we revealed transcript isoforms of key genes with functions in metabolism, apoptosis, nuclear export and as a transcriptional corepressor, expressed in either burst-performant or endurant individuals. Lastly, we find two up-regulated transcripts in burst-performant individuals that correspond to the expression of myosin-binding protein C fast-type (mybpc2). This suggests the presence of mybpc2 homoeologs and may have been favored by selection to permit fast and powerful locomotion. CONCLUSION: These results suggest that the differential expression of genes belonging to the pathways of calcium signaling, endoplasmic reticulum stress responses and striated muscle contraction, in addition to the use of alternative splicing and effectors of cellular activity underlie locomotor performance trade-offs. Ultimately, our transcriptomic analysis offers new perspectives for future analyses of the role of single nucleotide variants, homoeology and alternative splicing in the evolution of locomotor performance trade-offs.


Subject(s)
Gene Expression Profiling , Transcriptome , Animals , Anura , Xenopus , Xenopus laevis
2.
ACS Chem Biol ; 14(1): 67-75, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30556994

ABSTRACT

The cyanobacterial genus Microcystis is known to produce an elaborate array of structurally unique and biologically active natural products, including hazardous cyanotoxins. Cytotoxic aeruginoguanidines represent a yet unexplored family of peptides featuring a trisubstituted benzene unit and farnesylated arginine derivatives. In this study, we aimed at assigning these compounds to a biosynthetic gene cluster by utilizing biosynthetic attributes deduced from public genomes of Microcystis and the sporadic distribution of the metabolite in axenic strains of the Pasteur Culture Collection of Cyanobacteria. By integrating genome mining with untargeted metabolomics using liquid chromatography with mass spectrometry, we linked aeruginoguanidine (AGD) to a nonribosomal peptide synthetase gene cluster and coassigned a significantly smaller product to this pathway, microguanidine (MGD), previously only reported from two Microcystis blooms. Further, a new intermediate class of compounds named microguanidine amides was uncovered, thereby further enlarging this compound family. The comparison of structurally divergent AGDs and MGDs reveals an outstanding versatility of this biosynthetic pathway and provides insights into the assembly of the two compound subfamilies. Strikingly, aeruginoguanidines and microguanidines were found to be as widespread as the hepatotoxic microcystins, but the occurrence of both toxin families appeared to be mutually exclusive.


Subject(s)
Eutrophication , Guanidines/metabolism , Microcystis/genetics , Biosynthetic Pathways
3.
Appl Environ Microbiol ; 84(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29728380

ABSTRACT

Cyanobacteria can synthesize alkanes and alkenes, which are considered to be infrastructure-compatible biofuels. In terms of physiological function, cyanobacterial hydrocarbons are thought to be essential for membrane flexibility for cell division, size, and growth. The genetic basis for the biosynthesis of terminal olefins (1-alkenes) is a modular type I polyketide synthase (PKS) termed olefin synthase (Ols). The modular architectures of Ols and structural characteristics of alkenes have been investigated only in a few species of the small percentage (approximately 10%) of cyanobacteria that harbor putative Ols pathways. In this study, investigations of the domains, modular architectures, and phylogenies of Ols in 28 cyanobacterial strains suggested distinctive pathway evolution. Structural feature analyses revealed 1-alkenes with three carbon chain lengths (C15, C17, and C19). In addition, the total cellular fatty acid profile revealed the diversity of the carbon chain lengths, while the fatty acid feeding assay indicated substrate carbon chain length specificity of cyanobacterial Ols enzymes. Finally, in silico analyses suggested that the N terminus of the modular Ols enzyme exhibited characteristics typical of a fatty acyl-adenylate ligase (FAAL), suggesting a mechanism of fatty acid activation via the formation of acyl-adenylates. Our results shed new light on the diversity of cyanobacterial terminal olefins and a mechanism for substrate activation in the biosynthesis of these olefins.IMPORTANCE Cyanobacterial terminal olefins are hydrocarbons with promising applications as advanced biofuels. Despite the basic understanding of the genetic basis of olefin biosynthesis, the structural diversity and phylogeny of the key modular olefin synthase (Ols) have been poorly explored. An overview of the chemical structural traits of terminal olefins in cyanobacteria is provided in this study. In addition, we demonstrated by in vivo fatty acid feeding assays that cyanobacterial Ols enzymes might exhibit substrate carbon chain length specificity. Furthermore, by performing bioinformatic analyses, we observed that the substrate activation domain of Ols exhibited features typical of a fatty acyl-adenylate ligase (FAAL), which activates fatty acids by converting them to fatty acyl-adenylates. Our results provide further insight into the chemical structures of terminal olefins and further elucidate the mechanism of substrate activation for terminal olefin biosynthesis in cyanobacteria.


Subject(s)
Alkenes/metabolism , Cyanobacteria/enzymology , Cyanobacteria/metabolism , Phylogeny , Amino Acid Sequence , Bacterial Proteins/classification , Bacterial Proteins/genetics , Biofuels , Biosynthetic Pathways , Computational Biology , Cyanobacteria/classification , Cyanobacteria/genetics , Fatty Acids/metabolism , Hydrocarbons , Ligases/genetics , Polyketide Synthases/genetics , Protein Domains , Sequence Alignment , Substrate Specificity
4.
Science ; 359(6377): 779-782, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29449488

ABSTRACT

Current textbook knowledge holds that the structural scope of ribosomal biosynthesis is based exclusively on α-amino acid backbone topology. Here we report the genome-guided discovery of bacterial pathways that posttranslationally create ß-amino acid-containing products. The transformation is widespread in bacteria and is catalyzed by an enzyme belonging to a previously uncharacterized radical S-adenosylmethionine family. We show that the ß-amino acids result from an unusual protein splicing process involving backbone carbon-carbon bond cleavage and net excision of tyramine. The reaction can be used to incorporate diverse and multiple ß-amino acids into genetically encoded precursors in Escherichia coli In addition to enlarging the set of basic amino acid components, the excision generates keto functions that are useful as orthogonal reaction sites for chemical diversification.


Subject(s)
Amino Acids/metabolism , Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Protein Processing, Post-Translational , Protein Splicing , Amides/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Bacterial Proteins/genetics , Cyanobacteria/genetics , Escherichia coli/genetics , Genetic Loci , Mutation , Tyramine/chemistry
5.
Sci Rep ; 7: 41181, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28117406

ABSTRACT

Planktothrix is a dominant cyanobacterial genus forming toxic blooms in temperate freshwater ecosystems. We sequenced the genome of planktic and non planktic Planktothrix strains to better represent this genus diversity and life style at the genomic level. Benthic and biphasic strains are rooting the Planktothrix phylogenetic tree and widely expand the pangenome of this genus. We further investigated in silico the genetic potential dedicated to gas vesicles production, nitrogen fixation as well as natural product synthesis and conducted complementary experimental tests by cell culture, microscopy and mass spectrometry. Significant differences for the investigated features could be evidenced between strains of different life styles. The benthic Planktothrix strains showed unexpected characteristics such as buoyancy, nitrogen fixation capacity and unique natural product features. In comparison with Microcystis, another dominant toxic bloom-forming genus in freshwater ecosystem, different evolutionary strategies were highlighted notably as Planktothrix exhibits an overall greater genetic diversity but a smaller genomic plasticity than Microcystis. Our results are shedding light on Planktothrix evolution, phylogeny and physiology in the frame of their diverse life styles.


Subject(s)
Genetic Variation , Oscillatoria/genetics , Oscillatoria/metabolism , Genome , Genome, Bacterial , Genomics , Phylogeny
6.
Front Immunol ; 6: 111, 2015.
Article in English | MEDLINE | ID: mdl-25821449

ABSTRACT

We know that animals live in a world dominated by bacteria. In the last 20 years, we have learned that microbes are essential regulators of mucosal immunity. Bacteria, archeas, and viruses influence different aspects of mucosal development and function. Yet, the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: (i) the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and (ii) the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small-animal model to improve the fundamental knowledge on immunological functions of gut microbiota.

7.
Mol Phylogenet Evol ; 81: 1-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25193611

ABSTRACT

The genome size in eukaryotes does not correlate well with the number of genes they contain. We can observe this so-called C-value paradox in amphibian species. By analyzing an amphibian genome we asked how repetitive DNA can impact genome size and architecture. We describe here our discovery of a Tc1/mariner miniature inverted-repeat transposon family present in Xenopus frogs. These transposons named miDNA4 are unique since they contain a satellite DNA motif. We found that miDNA4 measured 331 bp, contained 25 bp long inverted terminal repeat sequences and a sequence motif of 119 bp present as a unique copy or as an array of 2-47 copies. We characterized the structure, dynamics, impact and evolution of the miDNA4 family and its satellite DNA in Xenopus frog genomes. This led us to propose a model for the evolution of these two repeated sequences and how they can synergize to increase genome size.


Subject(s)
DNA Transposable Elements , DNA, Satellite/genetics , Evolution, Molecular , Genome Size , Xenopus/genetics , Animals , Base Sequence , Conserved Sequence , Phylogeny , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...