Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Nano ; 14(11): 15953-15961, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33119253

ABSTRACT

The organization of natural materials into hierarchical structures accounts for the amazing properties of many biological systems; however, translating the structural motifs present in such natural materials to synthetic systems remains difficult. Inspired by how nature creates materials, this work demonstrates that kinetically controlled sequential seeded growth is a general bottom-up strategy to prepare hierarchical inorganic crystals with distinct compositions and nanostructured forms. Specifically, 85 distinct hierarchical crystals with different shape-controlled features, compositions, and overall symmetries were readily achieved by altering the kinetics of metal deposition in sequential rounds of seeded growth. These modifications in the deposition kinetics were achieved through simple changes to the reaction conditions (e.g., pH or halide concentration) and dictate whether concave or convex features are produced at specific seed locations, much in the manner that the changing atmospheric conditions account for the hierarchical and symmetrical structures of snow crystals. As such, this work provides a general paradigm for the bottom-up synthesis of hierarchical crystals regardless of inorganic material class.

3.
ACS Nano ; 11(12): 12624-12631, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29164855

ABSTRACT

Crystal growth theory predicts that heterogeneous nucleation will occur preferentially at defect sites, such as the vertices rather than the faces of shape-controlled seeds. Platonic metal solids are generally assumed to have vertices with nearly identical chemical potentials, and also nearly identical faces, leading to the useful generality that heterogeneous nucleation preserves the symmetry of the original seeds in the final product. Herein, we test the limits of this generality in the extreme of low supersaturation, in an effort to expand the methods available for inducing anisotropic overgrowth. We formulate a strategy for favoring localized deposition that differentiates between both different vertices and different edges or faces, i.e., regioselective deposition. Deposition followed a simple kinetic model for nucleation rate, depending on wetting, supersaturation, and temperature. We demonstrate our ability to independently study the effects of varying supersaturation and surface passivation. Regioselective heterogeneous nucleation was achieved at low supersaturation by a kinetic preference for high-energy defect-rich sites over lower-energy sites. This outcome was also achieved by using capping agents to passivate facet sites where deposition was not desired. Collectively, the results presented herein provide a model for breaking the symmetry of seeded growth and for achieving regioselective deposition.

SELECTION OF CITATIONS
SEARCH DETAIL
...