Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 6(4): 231-6, 1996 Dec.
Article in English | MEDLINE | ID: mdl-24227346

ABSTRACT

Effects of hydrostatic pressure on the fluorescence emission of L-tryptophan, N-acetyl-L-trytophanamide and indole were investigated. An increase in pressure ranging from 1 bar to 2.4 kbar results in reversible red-shifts of the emission of the three fluorophores. The pressure-induced redshift amounts to about 170 cm(-1) at 2.4 kbar, and appears related to changes in Stokes shift of the fluorophores caused by pressure effects on the dielectric constant and/or refractive index of the medium. As the pressure range investigated here is the range commonly used in studies of protein subunit association and/or folding, these observations raise the need for caution in interpreting pressure-induced spectral shifts. The significance of these observations to pressure studies of proteins is illustrated by investigation of pressure effects on human Cu,Zn Superoxide dismutase (SOD) and azurin fromPseudomonas aeruginosa. A reversible 170 cm(-1) red-shift of the emission of SOD was observed upon pressurization to 2.4 kbar. This might be interpreted as pressure-induced conformational changes of the protein. However, further studies using SOD that had been fully unfolded by guanidine hydrochloride, and fluorescence anisotropy measurements indicated that the observed red-shift was likely due to a direct effect of pressure on the fluorescence of the single tryptophan residue of SOD. Similar pressure-induced red-shifts were also observed for the buried tryptophan residue of azurin or for azurin that had been previously denatured by guanidine hydrochloride. These observations further suggest that the effective dielectric constant of the protein matrix is affected by pressure similarly to water.

SELECTION OF CITATIONS
SEARCH DETAIL
...