Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 4108, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32796840

ABSTRACT

Replicating biological patterns is promising for designing materials with multifaceted properties. Twisted cholesteric liquid crystal patterns are found in the iridescent tessellated cuticles of many insects and a few fruits. Their accurate replication is extremely difficult since discontinuous patterns and colors must coexist in a single layer without discontinuity of the structures. Here, a solution is demonstrated by addressing striped insect cuticles with a complex twisted organization. Geometric constraints are met by controlling the thermal diffusion in a cholesteric oligomer bilayer subjected to local changes in the molecular anchoring conditions. A multicriterion comparison reveals a very high level of biomimicry. Proof-of-concept prototypes of anti-counterfeiting tags are presented. The present design involves an economy of resources and a high versatility of chiral patterns unreached by the current manufacturing techniques such as metallic layer vacuum deposition, template embossing and various forms of lithography which are limited and often prohibitively expensive.


Subject(s)
Biomimetics/methods , Biophysics/methods , Liquid Crystals/chemistry , Optics and Photonics/methods , Animals , Insecta
2.
J R Soc Interface ; 17(167): 20200239, 2020 06.
Article in English | MEDLINE | ID: mdl-32546113

ABSTRACT

Biological systems inspire the design of multifunctional materials and devices. However, current synthetic replicas rarely capture the range of structural complexity observed in natural materials. Prior to the definition of a biomimetic design, a dual investigation with a common set of criteria for comparing the biological material and the replica is required. Here, we deal with this issue by addressing the non-trivial case of insect cuticles tessellated with polygonal microcells with iridescent colours due to the twisted cholesteric organization of chitin fibres. By using hyperspectral imaging within a common methodology, we compare, at several length scales, the textural, structural and spectral properties of the microcells found in the two-band cuticle of the scarab beetle Chrysina gloriosa with those of the polygonal texture formed in flat films of cholesteric liquid crystal oligomers. The hyperspectral imaging technique offers a unique opportunity to reveal the common features and differences in the spectral-spatial signatures of biological and synthetic samples at a 6-nm spectral resolution over 400 nm-1000 nm and a spatial resolution of 150 nm. The biomimetic design of chiral tessellations is relevant to the field of non-specular properties such as deflection and lensing in geometric phase planar optics.


Subject(s)
Coleoptera , Hyperspectral Imaging , Animals , Chitin , Insecta , Optics and Photonics
3.
Opt Express ; 27(15): 21794-21809, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510250

ABSTRACT

We demonstrate the ability to manipulate ultrashort pulses in cholesteric liquid crystals in the linear regime. We present an extensive analysis of the spectral changes undergone by 20fs pulses when propagating through band edges of cholesteric liquid crystals. The accurate quantification of the introduced optical dispersion opens the way to controlled stretching and compression of ultrashort pulses. The behaviors of cholesteric liquid crystal films with different thickness, bandgap and structural parameters (monotonic pitch versus pitch-gradient films) are compared. A statistical approach is disclosed to fidelize and deepen the set of experimental investigations.

4.
Soft Matter ; 15(15): 3256-3263, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30919852

ABSTRACT

Ongoing research on chiral liquid crystals takes advantage of the peculiar behavior of twisted structures subject to curvature. We demonstrate the fine tunability of the characteristics of the bandgap of a cholesteric structure in which the orientation of the helix axis spatially changes. To date, the spectral resolution of the order of 6 nm, herein reached by hyperspectral imaging, has not been solved in tilted helices. A correlation between spectral shifts and spatial twists is thus made possible.

5.
Nanotechnology ; 30(16): 165101, 2019 Apr 19.
Article in English | MEDLINE | ID: mdl-30654336

ABSTRACT

Description of the relationship between protein structure and function remains a primary focus in molecular biology, biochemistry, protein engineering and bioelectronics. Moreover, the investigation of the protein conformational changes after adhesion and dehydration is of importance to tackle problems related to the interaction of proteins with solid surfaces. In this paper the conformational changes of wild-type Discosoma recombinant red fluorescent proteins (DsRed) adhered on silver nanoparticles (AgNPs)-based nanocomposites are explored via surface-enhanced Raman scattering (SERS). Originality in the present approach is to work on dehydrated DsRed thin protein layers in link with natural conditions during drying. To enable the SERS effect, plasmonic substrates consisting of a single layer of AgNPs encapsulated by an ultra-thin silica cover layer were elaborated by plasma process. The achieved enhancement of the electromagnetic field in the vicinity of the AgNPs is as high as 105. This very strong enhancement factor allowed detecting Raman signals from discontinuous layers of DsRed issued from solution with protein concentration of only 80 nM. Three different conformations of the DsRed proteins after adhesion and dehydration on the plasmonic substrates were identified. It was found that the DsRed chromophore structure of the adsorbed proteins undergoes optically assisted chemical transformations when interacting with the optical beam, which leads to reversible transitions between the three different conformations. The proposed time-evolution scenario endorses the dynamical character of the relationship between protein structure and function. It also confirms that the conformational changes of proteins with strong internal coherence, like DsRed proteins, are reversible.


Subject(s)
Anthozoa/metabolism , Luminescent Proteins/chemistry , Nanocomposites/chemistry , Silver/chemistry , Animals , Desiccation , Metal Nanoparticles/chemistry , Models, Molecular , Protein Conformation , Spectrum Analysis, Raman , Surface Properties , Red Fluorescent Protein
6.
Sci Rep ; 7(1): 17325, 2017 12 11.
Article in English | MEDLINE | ID: mdl-29229943

ABSTRACT

Due to the great development of light sources for several applications from displays to lighting, great efforts are devoted to find stable and efficient visible emitting materials. Moreover, the requirement of Si compatibility could enlarge the range of applications inside microelectronic chips. In this scenario, we have studied the emission properties of bismuth doped yttrium oxide thin films grown on crystalline silicon. Under optical pumping at room temperature a stable and strong visible luminescence has been observed. In particular, by the involvement of Bi ions in the two available lattice sites, the emission can be tuned from violet to green by changing the excitation wavelength. Moreover, under electron beam at low accelerating voltages (3 keV) a blue emission with high efficiency and excellent stability has been recorded. The color is generated by the involvement of Bi ions in both the lattice sites. These peculiarities make this material interesting as a luminescent medium for applications in light emitting devices and field emission displays by opening new perspectives for the realization of silicon-technology compatible light sources operating at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...