Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(19): 197103, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38000405

ABSTRACT

The interplay between thermodynamics and information theory has a long history, but its quantitative manifestations are still being explored. We import tools from expected utility theory from economics into stochastic thermodynamics. We prove that, in a process obeying Crooks's fluctuation relations, every α Rényi divergence between the forward process and its reverse has the operational meaning of the "certainty equivalent" of dissipated work (or, more generally, of entropy production) for a player with risk aversion r=α-1. The two known cases α=1 and α=∞ are recovered and receive the new interpretation of being associated with a risk-neutral and an extreme risk-averse player, respectively. Among the new results, the condition for α=0 describes the behavior of a risk-seeking player willing to bet on the transient violations of the second law. Our approach further leads to a generalized Jarzynski equality, and generalizes to a broader class of statistical divergences.

2.
Phys Rev Lett ; 130(16): 160201, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37154660

ABSTRACT

We introduce a family of entanglement witnesses for continuous variable systems, which rely on the sole assumption that their dynamics is that of coupled harmonic oscillators at the time of the test. Entanglement is inferred from the Tsirelson nonclassicality test on one of the normal modes, without any knowledge about the state of the other mode. In each round, the protocol requires measuring only the sign of one coordinate (e.g., position) at one among several times. This dynamic-based entanglement witness is more akin to a Bell inequality than to an uncertainty relation: in particular, it does not admit false positives from classical theory. Our criterion detects non-Gaussian states, some of which are missed by other criteria.

3.
Nature ; 607(7920): 687-691, 2022 07.
Article in English | MEDLINE | ID: mdl-35896650

ABSTRACT

Device-independent quantum key distribution (DIQKD) enables the generation of secret keys over an untrusted channel using uncharacterized and potentially untrusted devices1-9. The proper and secure functioning of the devices can be certified by a statistical test using a Bell inequality10-12. This test originates from the foundations of quantum physics and also ensures robustness against implementation loopholes13, thereby leaving only the integrity of the users' locations to be guaranteed by other means. The realization of DIQKD, however, is extremely challenging-mainly because it is difficult to establish high-quality entangled states between two remote locations with high detection efficiency. Here we present an experimental system that enables for DIQKD between two distant users. The experiment is based on the generation and analysis of event-ready entanglement between two independently trapped single rubidium atoms located in buildings 400 metre apart14. By achieving an entanglement fidelity of [Formula: see text] and implementing a DIQKD protocol with random key basis15, we observe a significant violation of a Bell inequality of S = 2.578(75)-above the classical limit of 2-and a quantum bit error rate of only 0.078(9). For the protocol, this results in a secret key rate of 0.07 bits per entanglement generation event in the asymptotic limit, and thus demonstrates the system's capability to generate secret keys. Our results of secure key exchange with potentially untrusted devices pave the way to the ultimate form of quantum secure communications in future quantum networks.

4.
Phys Rev E ; 103(5-1): 052111, 2021 May.
Article in English | MEDLINE | ID: mdl-34134318

ABSTRACT

Quantitative studies of irreversibility in statistical mechanics often involve the consideration of a reverse process, whose definition has been the object of many discussions, in particular for quantum mechanical systems. Here we show that the reverse channel very naturally arises from Bayesian retrodiction, in both classical and quantum theories. Previous paradigmatic results, such as Jarzynski's equality, Crooks' fluctuation theorem, and Tasaki's two-measurement fluctuation theorem for closed driven quantum systems, are all shown to be consistent with retrodictive arguments. Also, various corrections that were introduced to deal with nonequilibrium steady states or open quantum systems are justified on general grounds as remnants of Bayesian retrodiction. More generally, with the reverse process constructed on consistent logical inference, fluctuation relations acquire a much broader form and scope.

5.
Nat Commun ; 12(1): 2880, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001885

ABSTRACT

Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of today's loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 108-1010 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice.

6.
Phys Rev Lett ; 124(10): 100603, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32216402

ABSTRACT

We discuss a self-contained spin-boson model for a measurement-driven engine, in which a demon generates work from thermal excitations of a quantum spin via measurement and feedback control. Instead of granting it full direct access to the spin state and to Landauer's erasure strokes for optimal performance, we restrict this demon's action to pointer measurements, i.e., random or continuous interrogations of a damped mechanical oscillator that assumes macroscopically distinct positions depending on the spin state. The engine can reach simultaneously the power and efficiency benchmarks and operate in temperature regimes where quantum Otto engines would fail.

7.
Phys Rev Lett ; 123(18): 180602, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31763916

ABSTRACT

We introduce a general framework for thermometry based on collisional models, where ancillas probe the temperature of the environment through an intermediary system. This allows for the generation of correlated ancillas even if they are initially independent. Using tools from parameter estimation theory, we show through a minimal qubit model that individual ancillas can already outperform the thermal Cramer-Rao bound. In addition, due to the steady-state nature of our model, when measured collectively the ancillas always exhibit superlinear scalings of the Fisher information. This means that even collective measurements on pairs of ancillas will already lead to an advantage. As we find in our qubit model, such a feature may be particularly valuable for weak system-ancilla interactions. Our approach sets forth the notion of metrology in a sequential interactions setting, and may inspire further advances in quantum thermometry.

8.
Phys Rev E ; 99(4-1): 042103, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108604

ABSTRACT

We study quantum dynamics in the framework of repeated interactions between a system and a stream of identical probes. We present a coarse-grained master equation that captures the system's dynamics in the natural regime where interactions with different probes do not overlap, but it is otherwise valid for arbitrary values of the interaction strength and mean interaction time. We then apply it to some specific examples. For probes prepared in Gibbs states, such channels have been used to describe thermalization: while this is the case for many choices of parameters, for others one finds out-of-equilibrium states including inverted Gibbs and maximally mixed states. Gapless probes can be interpreted as performing an indirect measurement, and we study the energy transfer associated with this measurement.

9.
Phys Rev E ; 99(4-1): 042202, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108702

ABSTRACT

We investigate the dynamics of interacting quantum planar rotors as the building blocks of gear trains and nanomachinery operating in the quantum regime. Contrary to a classical hard-gear scenario of rigidly interlocked teeth, we consider the coherent contactless coupling through a finite interlocking potential, and we study the transmission of motion from one externally driven gear to the next as a function of the coupling parameters and gear profile. The transmission is assessed in terms of transferred angular momentum and transferred mechanical work. We highlight the quantum features of the model such as quantum state revivals in the interlocked rotation and interference-enhanced transmission, which could be observed in prospective rotational optomechanics experiments.

10.
Nat Commun ; 10(1): 202, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30643131

ABSTRACT

In recent years substantial efforts have been expended in extending thermodynamics to single quantum systems. Quantum effects have emerged as a resource that can improve the performance of heat machines. However in the fully quantum regime their implementation still remains a challenge. Here, we report an experimental realization of a quantum absorption refrigerator in a system of three trapped ions, with three of its normal modes of motion coupled by a trilinear Hamiltonian such that heat transfer between two modes refrigerates the third. We investigate the dynamics and steady-state properties of the refrigerator and compare its cooling capability when only thermal states are involved to the case when squeezing is employed as a quantum resource. We also study the performance of such a refrigerator in the single shot regime made possible by coherence and demonstrate cooling below both the steady-state energy and a benchmark set by classical thermodynamics.

11.
Phys Rev Lett ; 121(15): 150402, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30362792

ABSTRACT

We present a violation of the Clauser-Horne-Shimony-Holt inequality without the fair sampling assumption with a continuously pumped photon pair source combined with two high efficiency superconducting detectors. Because of the continuous nature of the source, the choice of the duration of each measurement round effectively controls the average number of photon pairs participating in the Bell test. We observe a maximum violation of S=2.016 02(32) with an average number of pairs per round of ≈0.32, compatible with our system overall detection efficiencies. Systems that violate a Bell inequality are guaranteed to generate private randomness, with the randomness extraction rate depending on the observed violation and on the repetition rate of the Bell test. For our realization, the optimal rate of randomness generation is a compromise between the observed violation and the duration of each measurement round, with the latter realistically limited by the detection time jitter. Using an extractor composably secure against quantum adversary with quantum side information, we calculate an asymptotic rate of ≈1300 random bits/s. With an experimental run of 43 min, we generated 617 920 random bits, corresponding to ≈240 random bits/s.

12.
Phys Rev E ; 98(1-1): 012131, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110872

ABSTRACT

We investigate the performance of a three-spin quantum absorption refrigerator using a refined open quantum system model valid across all interspin coupling strengths. It describes the transition between previous approximate models for the weak and the ultrastrong coupling limit, and it predicts optimal refrigeration for moderately strong coupling, where both approximations are inaccurate. Two effects impede a more effective cooling: the coupling between the spins no longer reduces to a simple resonant energy exchange (the rotating wave approximation fails), and the interactions with the thermal baths become sensitive to the level splitting, thus opening additional heat channels between the reservoirs. We identify the modified conditions of refrigeration as a function of the interspin coupling strength, and we show that, contrary to intuition, a high-temperature work reservoir thwarts refrigeration in the strong coupling regime.

13.
Phys Rev Lett ; 119(8): 080401, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28952755

ABSTRACT

The Hilbert space dimension of a quantum system is the most basic quantifier of its information content. Lower bounds on the dimension can be certified in a device-independent way, based only on observed statistics. We highlight that some such "dimension witnesses" capture only the presence of systems of some dimension, which in a sense is trivial, not the capacity of performing information processing on them, which is the point of experimental efforts to control high-dimensional systems. In order to capture this aspect, we introduce the notion of irreducible dimension of a quantum behavior. This dimension can be certified, and we provide a witness for irreducible dimension four.

14.
Phys Rev E ; 95(6-1): 062131, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709328

ABSTRACT

The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics. Our model draws inspiration from actual piston engines and is built from closed-system Hamiltonians and weak bath coupling terms. We analytically derive the performance of the engine in the classical regime via a set of nonlinear Langevin equations. In the quantum case, we perform numerical simulations of the master equation. Finally, we perform a dynamic and thermodynamic analysis of the engine's behavior for several parameter regimes in both the classical and quantum case and find that the latter exhibits a consistently lower efficiency due to additional noise.

15.
Nat Commun ; 8: 15485, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28548093

ABSTRACT

Quantum technologies promise advantages over their classical counterparts in the fields of computation, security and sensing. It is thus desirable that classical users are able to obtain guarantees on quantum devices, even without any knowledge of their inner workings. That such classical certification is possible at all is remarkable: it is a consequence of the violation of Bell inequalities by entangled quantum systems. Device-independent self-testing refers to the most complete such certification: it enables a classical user to uniquely identify the quantum state shared by uncharacterized devices by simply inspecting the correlations of measurement outcomes. Self-testing was first demonstrated for the singlet state and a few other examples of self-testable states were reported in recent years. Here, we address the long-standing open question of whether every pure bipartite entangled state is self-testable. We answer it affirmatively by providing explicit self-testing correlations for all such states.

16.
Phys Rev Lett ; 117(25): 250503, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-28036222

ABSTRACT

We extend covert communication to the quantum regime by showing that covert quantum communication is possible over optical channels with noise arising either from the environment or from the sender's lab. In particular, we show that sequences of qubits can be transmitted covertly by using both a single photon and a coherent state encoding. We study the possibility of performing covert quantum key distribution (QKD) and show that positive key rates and covertness can be achieved simultaneously. Covert communication requires a secret key between the sender and receiver, which raises the problem of how this key can be regenerated covertly. We show that covert QKD consumes more secret bits than it can generate and propose instead a hybrid protocol for covert key regeneration that uses pseudorandom number generators (PRNGs) together with covert QKD to regenerate secret keys. The security of the new key is guaranteed by QKD while the security of the covert communication is at least as strong as the security of the PRNG.

17.
Science ; 352(6284): 441-4, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27102479

ABSTRACT

Characterizing many-body systems through the quantum correlations between their constituent particles is a major goal of quantum physics. Although entanglement is routinely observed in many systems, we report here the detection of stronger correlations--Bell correlations--between the spins of about 480 atoms in a Bose-Einstein condensate. We derive a Bell correlation witness from a many-particle Bell inequality involving only one- and two-body correlation functions. Our measurement on a spin-squeezed state exceeds the threshold for Bell correlations by 3.8 standard deviations. Our work shows that the strongest possible nonclassical correlations are experimentally accessible in many-body systems and that they can be revealed by collective measurements.

18.
Phys Rev Lett ; 113(4): 040401, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25105599

ABSTRACT

Self-testing refers to the fact that, in some quantum devices, both states and measurements can be assessed in a black-box scenario, on the sole basis of the observed statistics, i.e., without reference to any prior device calibration. Only a few examples of self-testing are known, and they just provide nontrivial assessment for devices performing unrealistically close to the ideal case. We overcome these difficulties by approaching self-testing with the semidefinite programing hierarchy for the characterization of quantum correlations. This allows us to improve dramatically the robustness of previous self-testing schemes; e.g., we show that a Clauser-Horne-Shimony-Holt violation larger than 2.57 certifies a singlet fidelity of more than 70%. In addition, the versatility of the tool brings about self-testing of hitherto impossible cases, such as the robust self-testing of nonmaximally entangled two-qutrit states in the Collins-Gisin-Linden-Massar-Popescu scenario.

19.
Phys Rev Lett ; 111(10): 103001, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-25166660

ABSTRACT

We investigate the interaction between a single atom and optical pulses in a coherent state with a controlled temporal envelope. In a comparison between a rising exponential and a square envelope, we show that the rising exponential envelope leads to a higher excitation probability for fixed low average photon numbers, in accordance with a time-reversed Weisskopf-Wigner model. We characterize the atomic transition dynamics for a wide range of the average photon numbers and are able to saturate the optical transition of a single atom with ≈50 photons in a pulse by a strong focusing technique.

20.
Phys Rev Lett ; 109(18): 180401, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23215258

ABSTRACT

In this Letter, we compute an analogue of Tsirelson's bound for Hardy's test of nonlocality, that is, the maximum violation of locality constraints allowed by the quantum formalism, irrespective of the dimension of the system. The value is found to be the same as the one achievable already with two-qubit systems, and we show that only a very specific class of states can lead to such maximal value, thus highlighting Hardy's test as a device-independent self-test protocol for such states. By considering realistic constraints in Hardy's test, we also compute device-independent upper bounds on this violation and show that these bounds are saturated by two-qubit systems, thus showing that there is no advantage in using higher-dimensional systems in experimental implementations of such a test.

SELECTION OF CITATIONS
SEARCH DETAIL
...