Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Materials (Basel) ; 15(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35160810

ABSTRACT

Imidazolium-based dicationic ionic liquids (DILs) are gaining considerable space in the field of organocatalysis mainly due to the opportunities in offering new possible applicable structural variations. In addition to the well-known variables which made the ionic liquids (ILs) famous as the type of cation and anion used, the nature of the molecular spacer moiety turns out a further possibility to improve some physicochemical properties, for example, solubility, acidity, electrochemical behavior, and so on. For this reason, this class of ionic liquids has been considered as possible competitors to their corresponding monocationic salts in replacing common catalysts in organic synthesis, particularly in cases in which their bidentate nature could positively affect the catalytic activity. This mini-review is intended to highlight the progress carried out in the last six years in the field of organocatalysis, including DILs as such and as hybrids with polymers, nanomaterials, and composites.

2.
J Org Chem ; 86(22): 16151-16157, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34213898

ABSTRACT

The anodic oxidation of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIm-BF4) efficiently generates BF3 from BF4-. This Lewis acid, strongly bound to the ionic liquids, can be efficiently used in classical BF3-catalyzed reactions. We demonstrated the BF3/BMIm-BF4 reactivity in four reactions, namely, a domino Friedel-Crafts/lactonization of phenols, the Povarov reaction, the Friedel-Crafts benzylation of anisole, and the multicomponent synthesis of tetrahydro-11H-benzo[a]xanthen-11-ones. In comparison with literature data using BF3-Et2O in organic solvents, in all the presented cases, analogous or improved results were obtained. Moreover, the noteworthy advantages of the developed method are the in situ generation of BF3 (no storing necessity) in the required amount, using only the electron as redox reagent, and the recycling of BMIm-BF4 for multiple subsequent runs.


Subject(s)
Ionic Liquids , Oxidation-Reduction , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...