Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Thyroid ; 27(11): 1433-1440, 2017 11.
Article in English | MEDLINE | ID: mdl-28920557

ABSTRACT

BACKGROUND: The ability of thyroid follicular cells to take up iodine enables the use of radioactive iodine (RAI) for imaging and targeted killing of RAI-avid thyroid cancer following thyroidectomy. To facilitate identifying novel strategies to improve 131I therapeutic efficacy for patients with RAI refractory disease, it is desired to optimize image acquisition and analysis for preclinical mouse models of thyroid cancer. METHODS: A customized mouse cradle was designed and used for microSPECT/CT image acquisition at 1 hour (t1) and 24 hours (t24) post injection of 123I, which mainly reflect RAI influx/efflux equilibrium and RAI retention in the thyroid, respectively. FVB/N mice with normal thyroid glands and TgBRAFV600E mice with thyroid tumors were imaged. In-house CTViewer software was developed to streamline image analysis with new capabilities, along with display of 3D voxel-based 123I gamma photon intensity in MATLAB. RESULTS: The customized mouse cradle facilitates consistent tissue configuration among image acquisitions such that rigid body registration can be applied to align serial images of the same mouse via the in-house CTViewer software. CTViewer is designed specifically to streamline SPECT/CT image analysis with functions tailored to quantify thyroid radioiodine uptake. Automatic segmentation of thyroid volumes of interest (VOI) from adjacent salivary glands in t1 images is enabled by superimposing the thyroid VOI from the t24 image onto the corresponding aligned t1 image. The extent of heterogeneity in 123I accumulation within thyroid VOIs can be visualized by 3D display of voxel-based 123I gamma photon intensity. CONCLUSIONS: MicroSPECT/CT image acquisition and analysis for thyroidal RAI uptake is greatly improved by the cradle and the CTViewer software, respectively. Furthermore, the approach of superimposing thyroid VOIs from t24 images to select thyroid VOIs on corresponding aligned t1 images can be applied to studies in which the target tissue has differential radiotracer retention from surrounding tissues.


Subject(s)
Radiographic Image Interpretation, Computer-Assisted/methods , Single Photon Emission Computed Tomography Computed Tomography/methods , Thyroid Gland/diagnostic imaging , X-Ray Microtomography , Animals , Automation , Equipment Design , Injections, Intravenous , Iodine Radioisotopes/administration & dosage , Mice, Transgenic , Mutation , Predictive Value of Tests , Proto-Oncogene Proteins B-raf/genetics , Radiopharmaceuticals/administration & dosage , Reproducibility of Results , Restraint, Physical/instrumentation , Single Photon Emission Computed Tomography Computed Tomography/instrumentation , Software , X-Ray Microtomography/instrumentation
2.
Oncotarget ; 6(31): 31792-804, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26397139

ABSTRACT

Targeted radioiodine therapy for thyroid cancer is based on selective stimulation of Na+/I- Symporter (NIS)-mediated radioactive iodide uptake (RAIU) in thyroid cells by thyrotropin. Patients with advanced thyroid cancer do not benefit from radioiodine therapy due to reduced or absent NIS expression. To identify inhibitors that can be readily translated into clinical care, we examined oncological pipeline inhibitors targeting Akt, MEK, PI3K, Hsp90 or BRAF in their ability to increase RAIU in thyroid cells expressing BRAFV600E or RET/PTC3 oncogene. Our data showed that (1) PI3K inhibitor GDC-0941 outperformed other inhibitors in RAIU increase mainly by decreasing iodide efflux rate to a great extent; (2) RAIU increase by all inhibitors was extensively reduced by TGF-ß, a cytokine secreted in the invasive fronts of thyroid cancers; (3) RAIU reduction by TGF-ß was mainly mediated by NIS reduction and could be reversed by Apigenin, a plant-derived flavonoid; and (4) In the presence of TGF-ß, GDC-0941 with Apigenin co-treatment had the highest RAIU level in both BRAFV600E expressing cells and RET/PTC3 expressing cells. Taken together, Apigenin may serve as a dietary supplement along with small molecule inhibitors to improve radioiodine therapeutic efficacy on invasive tumor margins thereby minimizing future metastatic events.


Subject(s)
Apigenin/pharmacology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Iodine Radioisotopes/administration & dosage , Small Molecule Libraries/pharmacology , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Animals , Blotting, Western , Cells, Cultured , Immunoenzyme Techniques , Iodine Radioisotopes/pharmacokinetics , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , RNA, Messenger/genetics , Radionuclide Imaging , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Thyroid Gland/diagnostic imaging , Tissue Distribution , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
3.
Horm Cancer ; 5(6): 363-73, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25234361

ABSTRACT

Radioactive iodine (RAI) is a key therapeutic modality for thyroid cancer. Loss of RAI uptake in thyroid cancer inversely correlates with patient's survival. In this review, we focus on the challenges encountered in delivering sufficient doses of I-131 to eradicate metastatic lesions without increasing the risk of unwanted side effects. Sodium iodide symporter (NIS) mediates iodide influx, and NIS expression and function can be selectively enhanced in thyroid cells by thyroid-stimulating hormone. We summarize our current knowledge of NIS modulation in normal and cancer thyroid cells, and we propose that several reagents evaluated in clinical trials for other diseases can be used to restore or further increase RAI accumulation in thyroid cancer. Once validated in preclinical mouse models and clinical trials, these reagents, mostly small-molecule inhibitors, can be readily translated into clinical practice. We review available genetically engineered mouse models of thyroid cancer in terms of their tumor development and progression as well as their thyroid function. These mice will not only provide important insights into the mechanisms underlying the loss of RAI uptake in thyroid tumors but will also serve as preclinical animal models to evaluate the efficacy of candidate reagents to selectively increase RAI uptake in thyroid cancers. Taken together, we anticipate that the optimal use of RAI in the clinical management of thyroid cancer is yet to come in the near future.


Subject(s)
Iodine Radioisotopes/therapeutic use , Symporters/metabolism , Thyroid Neoplasms/radiotherapy , Animals , Clinical Trials as Topic , Disease Models, Animal , Drug Evaluation, Preclinical , Genetic Engineering , Humans , Mice , Neoplasm Metastasis , Symporters/genetics , Thyrotropin/metabolism , Up-Regulation
4.
J Neurosci ; 33(21): 9021-7, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23699513

ABSTRACT

The CREB/CRE transcriptional pathway has been implicated in circadian clock timing and light-evoked clock resetting. To date, much of the work on CREB in circadian physiology has focused on how changes in the phosphorylation state of CREB regulate the timing processes. However, beyond changes in phosphorylation, CREB-dependent transcription can also be regulated by the CREB coactivator CRTC (CREB-regulated transcription coactivator), also known as TORC (transducer of regulated CREB). Here we profiled both the rhythmic and light-evoked regulation of CRTC1 and CRTC2 in the murine suprachiasmatic nucleus (SCN), the locus of the master mammalian clock. Immunohistochemical analysis revealed rhythmic expression of CRTC1 in the SCN. CRTC1 expression was detected throughout the dorsoventral extent of the SCN in the middle of the subjective day, with limited expression during early night, and late night expression levels intermediate between mid-day and early night levels. In contrast to CRTC1, robust expression of CRTC2 was detected during both the subjective day and night. During early and late subjective night, a brief light pulse induced strong nuclear accumulation of CRTC1 in the SCN. In contrast with CRTC1, photic stimulation did not affect the subcellular localization of CRTC2 in the SCN. Additionally, reporter gene profiling and chromatin immunoprecipitation analysis indicated that CRTC1 was associated with CREB in the 5' regulatory region of the period1 gene, and that overexpression of CRTC1 leads to a marked upregulation in period1 transcription. Together, these data raise the prospect that CRTC1 plays a role in fundamental aspects of SCN clock timing and entrainment.


Subject(s)
CREB-Binding Protein/metabolism , Circadian Clocks/physiology , Light , Suprachiasmatic Nucleus/metabolism , Transcription Factors/metabolism , Up-Regulation/physiology , Animals , CREB-Binding Protein/genetics , Chromatin Immunoprecipitation , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Phosphopyruvate Hydratase/metabolism , Photic Stimulation , Transcription Factors/genetics , Transfection , Up-Regulation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...