Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Psychiatry ; 9: 372, 2018.
Article in English | MEDLINE | ID: mdl-30174623

ABSTRACT

22q11.2 deletion syndrome (22q11DS) is a neurogenetic disorder that causes a high risk of developing schizophrenia, thus representing a unique model for the investigation of biomarkers of psychosis. Cognitive and clinical risk factors have been identified as reliable predictors of schizophrenia in patients with 22q11DS and are currently used in the clinical practice. However, biomarkers based on neuroimaging are still lacking, mainly because of the analytic approaches adopted so far, which are almost uniquely based on the comparison of 22q11DS patients with healthy controls. Such comparisons do not take into account the heterogeneity within patients with 22q11DS, who indeed show various clinical manifestations. More recently, a number of studies compared measures of brain morphology and connectivity between patients with 22q11DS with different symptomatic profiles. The aim of this short review is to highlight the brain alterations found in patients with 22q11DS fulfilling ultra-high risk (UHR) criteria. Findings point to alterations in brain morphology and connectivity in frontal brain regions, and in particular in the anterior cingulate cortex, in patients with 22q11DS presenting UHR symptoms. These alterations may represent valuable biomarkers of psychosis in 22q11DS.

2.
Front Neurosci ; 12: 327, 2018.
Article in English | MEDLINE | ID: mdl-29867336

ABSTRACT

Background: Schizophrenia is currently considered a neurodevelopmental disorder of connectivity. Still few studies have investigated how brain networks develop in children and adolescents who are at risk for developing psychosis. 22q11.2 Deletion Syndrome (22q11DS) offers a unique opportunity to investigate the pathogenesis of schizophrenia from a neurodevelopmental perspective. Structural covariance (SC) is a powerful approach to explore morphometric relations between brain regions that can furthermore detect biomarkers of psychosis, both in 22q11DS and in the general population. Methods: Here we implement a state-of-the-art sliding-window approach to characterize maturation of SC network architecture in a large longitudinal cohort of patients with 22q11DS (110 with 221 visits) and healthy controls (117 with 211 visits). We furthermore propose a new clustering-based approach to group regions according to trajectories of structural connectivity maturation. We correlate measures of SC with development of working memory, a core executive function that is highly affected in both idiopathic psychosis and 22q11DS. Finally, in 22q11DS we explore correlations between SC dysconnectivity and severity of internalizing psychopathology. Results: In HCs network architecture underwent a quadratic developmental trajectory maturing up to mid-adolescence. Late-childhood maturation was particularly evident for fronto-parietal cortices, while Default-Mode-Network-related regions showed a more protracted linear development. Working memory performance was positively correlated with network segregation and fronto-parietal connectivity. In 22q11DS, we demonstrate aberrant maturation of SC with disturbed architecture selectively emerging during adolescence and correlating more severe internalizing psychopathology. Patients also presented a lack of typical network development during late-childhood, that was particularly prominent for frontal connectivity. Conclusions: Our results suggest that SC maturation may underlie critical cognitive development occurring during late-childhood in healthy controls. Aberrant trajectories of SC maturation may reflect core developmental features of 22q11DS, including disturbed cognitive maturation during childhood and predisposition to internalizing psychopathology and psychosis during adolescence.

3.
Article in English | MEDLINE | ID: mdl-29735153

ABSTRACT

BACKGROUND: 22q11.2 deletion syndrome (22q11DS) is the third-largest known genetic risk factor for the development of psychosis. Dysconnectivity has consistently been implicated in the physiopathology of psychosis. Structural covariance of cortical morphology is a method of exploring connectivity among brain regions that to date has not been employed in 22q11DS. METHODS: In the present study we employed structural covariance of cortical thickness to explore connectivity alterations in a group of 108 patients with 22q11DS compared with 96 control subjects. We subsequently divided patients into two subgroups of 31 subjects each according to the presence of attenuated psychotic symptoms. FreeSurfer software was used to obtain the mean cortical thickness in 148 brain regions from T1-weighted 3T images. For each population we reconstructed a brain graph using Pearson correlation between the average thickness of each couple of brain regions, which we characterized in terms of mean correlation strength and in terms of network architecture using graph theory. RESULTS: Patients with 22q11DS presented increased mean correlation strength, but there was no difference in global architecture compared with control subjects. However, symptomatic patients presented increased mean correlation strength coupled with increased segregation and decreased integration compared with both control subjects and nonsymptomatic patients. They also presented increased centrality for a cluster of anterior cingulate and dorsomedial prefrontal regions. CONCLUSIONS: These results confirm the importance of cortical dysconnectivity in the physiopathology of psychosis. Moreover they support the significance of aberrant anterior cingulate connectivity.


Subject(s)
Brain/pathology , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , Image Processing, Computer-Assisted , Adolescent , Adult , Brain Mapping/methods , Child , Female , Humans , Male , Neural Pathways/pathology , Psychotic Disorders/genetics , Psychotic Disorders/pathology , Young Adult
4.
Psychol Med ; 48(14): 2375-2383, 2018 10.
Article in English | MEDLINE | ID: mdl-29338796

ABSTRACT

BACKGROUND: Patients with 22q11.2 deletion syndrome (22q11DS) present a high risk of developing psychosis. While clinical and cognitive predictors for the conversion towards a full-blown psychotic disorder are well defined and largely used in practice, neural biomarkers do not yet exist. However, a number of investigations indicated an association between abnormalities in cortical morphology and higher symptoms severities in patients with 22q11DS. Nevertheless, few studies included homogeneous groups of patients differing in their psychotic symptoms profile. METHODS: In this study, we included 22 patients meeting the criteria for an ultra-high-risk (UHR) psychotic state and 22 age-, gender- and IQ-matched non-UHR patients. Measures of cortical morphology, including cortical thickness, volume, surface area and gyrification, were compared between the two groups using mass-univariate and multivariate comparisons. Furthermore, the development of these measures was tested in the two groups using a mixed-model approach. RESULTS: Our results showed differences in cortical volume and surface area in UHR patients compared with non-UHR. In particular, we found a positive association between surface area and the rate of change of global functioning, suggesting that higher surface area is predictive of improved functioning with age. We also observed accelerated cortical thinning during adolescence in UHR patients with 22q11DS. CONCLUSIONS: These results, although preliminary, suggest that alterations in cortical volume and surface area as well as altered development of cortical thickness may be associated to a greater probability to develop psychosis in 22q11DS.


Subject(s)
Cerebral Cortex/pathology , DiGeorge Syndrome/pathology , Disease Progression , Magnetic Resonance Imaging/methods , Psychotic Disorders/pathology , Schizophrenia/pathology , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Cross-Sectional Studies , DiGeorge Syndrome/complications , DiGeorge Syndrome/diagnostic imaging , Female , Humans , Longitudinal Studies , Male , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/etiology , Risk , Schizophrenia/diagnostic imaging , Schizophrenia/etiology , Young Adult
5.
Schizophr Res ; 193: 319-328, 2018 03.
Article in English | MEDLINE | ID: mdl-28803847

ABSTRACT

Chromosome 22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental disorder associated with a broad phenotype of clinical, cognitive and psychiatric features. Due to the very high prevalence of schizophrenia (30-40%), the investigation of psychotic symptoms in the syndrome is promising to reveal biomarkers for the development of psychosis, also in the general population. Since schizophrenia is seen as a disorder of the dynamic interactions between brain networks, we here investigated brain dynamics, assessed by the variability of blood oxygenation level dependent (BOLD) signals, in patients with psychotic symptoms. We included 28 patients with 22q11DS presenting higher positive psychotic symptoms, 29 patients with lower positive psychotic symptoms and 69 healthy controls between 10 and 30years old. To overcome limitations of mass-univariate approaches, we employed multivariate analysis, namely partial least squares correlation, combined with proper statistical testing, to analyze resting-state BOLD signal variability and its age-relationship in patients with positive psychotic symptoms. Our results revealed a missing positive age-relationship in the dorsal anterior cingulate cortex (dACC) in patients with higher positive psychotic symptoms, leading to globally lower variability in the dACC in those patients. Patients without positive psychotic symptoms and healthy controls had the same developmental trajectory in this region. Alterations of brain structure and function in the ACC have been previously reported in 22q11DS and linked to psychotic symptoms. The present results support the implication of this region in the development of psychotic symptoms and suggest aberrant BOLD signal variability development as a potential biomarker for psychosis.


Subject(s)
DiGeorge Syndrome/complications , Gyrus Cinguli/blood supply , Oxygen/blood , Psychotic Disorders/etiology , Psychotic Disorders/pathology , Adolescent , Adult , Child , Female , Gyrus Cinguli/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Psychiatric Status Rating Scales , Psychotic Disorders/diagnostic imaging , Young Adult
6.
PLoS One ; 12(11): e0187493, 2017.
Article in English | MEDLINE | ID: mdl-29141024

ABSTRACT

Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts' length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS) and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/physiopathology , DiGeorge Syndrome/physiopathology , White Matter/physiopathology , Adolescent , Adult , Case-Control Studies , Cerebral Cortex/diagnostic imaging , Child , DiGeorge Syndrome/diagnostic imaging , Diffusion Tensor Imaging/methods , Female , Humans , Male , White Matter/diagnostic imaging , Young Adult
7.
Neuroimage Clin ; 16: 142-150, 2017.
Article in English | MEDLINE | ID: mdl-28794975

ABSTRACT

22q11.2 deletion syndrome (22q11DS) represents a homogeneous model of schizophrenia particularly suitable for the search of neural biomarkers of psychosis. Impairments in structural connectivity related to the presence of psychotic symptoms have been reported in patients with 22q11DS. However, the relationships between connectivity changes in patients with different symptomatic profiles are still largely unknown and warrant further investigations. In this study, we used structural connectivity to discriminate patients with 22q11DS with (N = 31) and without (N = 31) attenuated positive psychotic symptoms. Different structural connectivity measures were used, including the number of streamlines connecting pairs of brain regions, graph theoretical measures, and diffusion measures. We used univariate group comparisons as well as predictive multivariate approaches. The univariate comparison of connectivity measures between patients with or without attenuated positive psychotic symptoms did not give significant results. However, the multivariate prediction revealed that altered structural network architecture discriminates patient subtypes (accuracy = 67.7%). Among the regions contributing to the classification we found the anterior cingulate cortex, which is known to be associated to the presence of psychotic symptoms in patients with 22q11DS. Furthermore, a significant discrimination (accuracy = 64%) was obtained with fractional anisotropy and radial diffusivity in the left inferior longitudinal fasciculus and the right cingulate gyrus. Our results point to alterations in structural network architecture and white matter microstructure in patients with 22q11DS with attenuated positive symptoms, mainly involving connections of the limbic system. These alterations may therefore represent a potential biomarker for an increased risk of psychosis that should be further tested in longitudinal studies.


Subject(s)
Brain/pathology , DiGeorge Syndrome/complications , DiGeorge Syndrome/pathology , Psychotic Disorders/complications , Psychotic Disorders/pathology , Adolescent , Adult , Brain/diagnostic imaging , DiGeorge Syndrome/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Humans , Male , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Psychotic Disorders/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
8.
Neuroimage ; 149: 85-97, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28143774

ABSTRACT

Although often ignored in fMRI studies, moment-to-moment variability of blood oxygenation level dependent (BOLD) signals reveals important information about brain function. Indeed, higher brain signal variability has been associated with better cognitive performance in young adults compared to children and elderly adults. Functional connectivity, a very common approach in resting-state fMRI analysis, is scaled for variance. Thus, alterations might be confounded or driven by BOLD signal variance alterations. Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a neurodevelopmental disorder that is associated with a vast cognitive and clinical phenotype. To date, several resting-state fMRI studies reported altered functional connectivity in 22q11.2DS, however BOLD signal variance has not yet been analyzed. Here, we employed PLS correlation analysis to reveal multivariate patterns of diagnosis-related alterations and age-relationship throughout the cortex of 50 patients between 9 and 25 years old and 50 healthy controls in the same age range. To address how functional connectivity in the default mode network is influenced by BOLD signal fluctuations, we conducted the same analysis on seed-to-voxel connectivity of the posterior cingulate cortex (PCC) and compared resulting brain patterns. BOLD signal variance was lower mainly in regions of the default mode network and in the dorsolateral prefrontal cortex, but higher in large parts of the temporal lobes. In those regions, BOLD signal variance was correlated with age in healthy controls, but not in patients, suggesting deviant developmental trajectories from child- to adulthood. Positive connectivity of the PCC within the default mode network as well as negative connectivity towards the frontoparietal network were weaker in patients with 22q11.2DS. We furthermore showed that lower functional connectivity of the PCC was not driven by higher BOLD signal variability. Our results confirm the strong implication of BOLD variance in aging and give an initial insight in its relationship with functional connectivity in the DMN.


Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiopathology , DiGeorge Syndrome/physiopathology , Neural Pathways/physiopathology , Adolescent , Adult , Child , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Male , Young Adult
9.
Schizophr Res ; 188: 52-58, 2017 10.
Article in English | MEDLINE | ID: mdl-28139357

ABSTRACT

Approximately 30% of individuals with 22q11.2 Deletion Syndrome (22q11DS) develop schizophrenia during adolescence/early adulthood, making this syndrome a model for the disorder. Furthermore, negative symptoms exist in up to 80% of patients diagnosed with 22q11DS. The present study aims to uncover morphological brain alterations associated with negative symptoms in a cohort of patients with 22q11DS who are at-risk for developing schizophrenia. A total of 71 patients with 22q11DS aged 12 to 35 (54% females) with no past or present diagnosis of a schizophrenia were included in the study. Psychotic symptom scores were used to divide patients into subgroups by means of a cluster analysis. Three major subgroups were evident: patients with low negative and positive symptoms; patients with high negative symptoms and low positive symptoms; and patients with high negative and positive symptoms. Cortical volume, thickness and gyrification were compared between subgroups using FreeSurfer software. Results showed that patients with high negative symptoms, compared to those with low negative symptoms, have decreased gyrification in the medial occipito-temporal (MOT) and lateral temporo-parietal (LTP) cortices of the left hemisphere, and in the medial temporal (MT)/posterior cingulate (PCC) cortices of the right hemisphere. These findings suggest that high negative symptoms are associated with gyrification reductions predominantly in medial occipital and temporal regions, which are areas implicated in social cognition and early visual processing. Furthermore, as cortical folding develops in utero and during the first years of life, reduced gyrification may represent an early biomarker predicting the development of negative symptoms.


Subject(s)
Brain/diagnostic imaging , DiGeorge Syndrome/diagnostic imaging , DiGeorge Syndrome/psychology , Adolescent , Adult , Anhedonia , Brain/pathology , Child , Cluster Analysis , Cross-Sectional Studies , DiGeorge Syndrome/pathology , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Male , Organ Size , Psychiatric Status Rating Scales , Psychotic Disorders/psychology , Social Behavior , Young Adult
10.
Hum Brain Mapp ; 38(4): 2177-2189, 2017 04.
Article in English | MEDLINE | ID: mdl-28117515

ABSTRACT

Large-scale brain networks play a prominent role in cognitive abilities and their activity is impaired in psychiatric disorders, such as schizophrenia. Patients with 22q11.2 deletion syndrome (22q11DS) are at high risk of developing schizophrenia and present similar cognitive impairments, including executive functions deficits. Thus, 22q11DS represents a model for the study of neural biomarkers associated with schizophrenia. In this study, we investigated structural and functional connectivity within and between the Default Mode (DMN), the Central Executive (CEN), and the Saliency network (SN) in 22q11DS using resting-state fMRI and DTI. Furthermore, we investigated if triple network impairments were related to executive dysfunctions or the presence of psychotic symptoms. Sixty-three patients with 22q11DS and sixty-eighty controls (age 6-33 years) were included in the study. Structural connectivity between main nodes of DMN, CEN, and SN was computed using probabilistic tractography. Functional connectivity was computed as the partial correlation between the time courses extracted from each node. Structural and functional connectivity measures were then correlated to executive functions and psychotic symptom scores. Our results showed mainly reduced structural connectivity within the CEN, DMN, and SN, in patients with 22q11DS compared with controls as well as reduced between-network connectivity. Functional connectivity appeared to be more preserved, with impairments being evident only within the DMN. Structural connectivity impairments were also related to executive dysfunctions. These findings show an association between triple network structural alterations and executive deficits in patients with the microdeletion, suggesting that 22q11DS and schizophrenia share common psychopathological mechanisms. Hum Brain Mapp 38:2177-2189, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/pathology , Chromosome Disorders/complications , Cognition Disorders/genetics , Cognition Disorders/pathology , Executive Function/physiology , Nerve Net/pathology , Adolescent , Adult , Brain/diagnostic imaging , Child , Chromosome Deletion , Chromosomes, Human, Pair 22 , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Neuropsychological Tests , Oxygen/blood , Psychiatric Status Rating Scales , Statistics as Topic , Young Adult
11.
J Neurodev Disord ; 8: 41, 2016.
Article in English | MEDLINE | ID: mdl-27843501

ABSTRACT

BACKGROUND: Children affected by the 22q11.2 deletion syndrome (22q11.2DS) have a specific neuropsychological profile with strengths and weaknesses in several cognitive domains. Specifically, previous evidence has shown that patients with 22q11.2DS have more difficulties memorizing faces and visual-object characteristics of stimuli. In contrast, they have better performance in visuo-spatial memory tasks. The first focus of this study was to replicate these results in a larger sample of patients affected with 22q11.2DS and using a range of memory tasks. Moreover, we analyzed if the deficits were related to brain morphology in the structures typically underlying these abilities (ventral and dorsal visual streams). Finally, since the longitudinal development of visual memory is not clearly characterized in 22q11.2DS, we investigated its evolution from childhood to adolescence. METHODS: Seventy-one patients with 22q11.2DS and 49 control individuals aged between 9 and 16 years completed the Benton Visual Retention Test (BVRT) and specific subtests assessing visual memory from the Children's Memory Scale (CMS). The BVRT was used to compute spatial and object memory errors. For the CMS, specific subtests were classified into ventral, dorsal, and mixed subtests. Longitudinal data were obtained from a subset of 26 patients and 22 control individuals. RESULTS: Cross-sectional results showed that patients with 22q11.2DS were impaired in all visual memory measures, with stronger deficits in visual-object memory and memory of faces, compared to visuo-spatial memory. No correlations between morphological brain impairments and visual memory were found in patients with 22q11.2DS. Longitudinal findings revealed that participants with 22q11.2DS made more object memory errors than spatial memory errors at baseline. This difference was no longer significant at follow-up. CONCLUSIONS: Individuals with 22q11.2DS have impairments in visual memory abilities, with more pronounced difficulties in memorizing faces and visual-object characteristics. From childhood to adolescence, the visual cognitive profile of patients with 22q11.2DS seems globally stable even though some processes show an evolution with time. We hope that our results will help clinicians and caregivers to better understand the memory difficulties of young individuals with 22q11.2DS. This has a particular importance at school to facilitate recommendations concerning intervention strategies for these young patients.

12.
Cortex ; 82: 86-99, 2016 09.
Article in English | MEDLINE | ID: mdl-27371790

ABSTRACT

The 22q11.2 deletion syndrome (22q11DS) is associated with cognitive impairments and a 41% risk of developing schizophrenia. While several studies performed on patients with 22q11DS showed the presence of abnormal functional connectivity in this syndrome, how these alterations affect large-scale network organization is still unknown. Here we performed a network modularity analysis on whole-brain functional connectomes derived from the resting-state fMRI of 40 patients with 22q11DS and 41 healthy control participants, aged between 9 and 30 years old. We then split the sample at 18 years old to obtain two age subgroups and repeated the modularity analyses. We found alterations of modular communities affecting the visuo-spatial network and the anterior cingulate cortex (ACC) in both age groups. These results corroborate previous structural and functional studies in 22q11DS that showed early impairment of visuo-spatial processing regions. Furthermore, as ACC has been linked to the development of psychotic symptoms in 22q11DS, the early impairment of its functional connectivity provide further support that ACC alterations may provide potential biomarkers for an increased risk of schizophrenia. Finally, we found an abnormal modularity partition of the dorsolateral prefrontal cortex (DLPFC) only in adults with 22q11DS, suggesting the presence of an abnormal development of functional network communities during adolescence in 22q11DS.


Subject(s)
Brain/diagnostic imaging , Connectome , DiGeorge Syndrome/diagnostic imaging , Nerve Net/diagnostic imaging , Adolescent , Adult , Brain/physiopathology , Child , DiGeorge Syndrome/physiopathology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Nerve Net/physiopathology , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Space Perception/physiology , Visual Perception/physiology , Young Adult
13.
Neuroimage Clin ; 10: 239-49, 2016.
Article in English | MEDLINE | ID: mdl-26870660

ABSTRACT

Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes), we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure) as the affected core (A-core) of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs - chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, "de-centralizing" the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30-40% of 22q11DS patients develop.


Subject(s)
Brain/pathology , Connectome , DiGeorge Syndrome/pathology , White Matter/pathology , Adolescent , Adult , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Image Processing, Computer-Assisted , Male , Young Adult
14.
J Neurodev Disord ; 7(1): 23, 2015.
Article in English | MEDLINE | ID: mdl-26236404

ABSTRACT

BACKGROUND: The neural endophenotype associated with 22q11.2 deletion syndrome (22q11DS) includes deviant cortical development and alterations in brain connectivity. Resting-state functional magnetic resonance imaging (fMRI) findings also reported disconnectivity within the default mode network (DMN). In this study, we explored the relationship between functional and structural DMN connectivity and their changes with age in patients with 22q11DS in comparison to control participants. Given previous evidence of an association between DMN disconnectivity and the manifestation of psychotic symptoms, we further investigated this relationship in our group of patients with 22q11DS. METHODS: T1-weighted, diffusion, and resting-state fMRI scans were acquired from 41 patients with 22q11DS and 43 control participants aged 6 to 28 years. A data-driven approach based on independent component analysis (ICA) was used to identify the DMN and to define regions of interest for the structural and functional connectivity analysis. Prodromal psychotic symptoms were assessed in adolescents and adults using the positive symptom scores of the Structured Interview of Prodromal Syndromes (SIPS). Connectivity measures were compared between groups and correlated with age. Repeating the between-group analysis in three different age bins further assessed the presence of age-related alterations in DMN connectivity. Structural and functional connectivity measures were then correlated with the SIPS scores. RESULTS: A simultaneous reduction of functional and structural connectivity between core medial nodes of the DMN was observed. Furthermore, structural connectivity measures significantly increased with age in the control group but not in patients with 22q11DS, suggesting the presence of an age-related alteration of the DMN structural connections. No correlations were found between the DMN disconnectivity and expression of prodromal symptoms in 22q11DS. CONCLUSIONS: These findings indicate the presence of functional and structural DMN disconnectivity in 22q11DS and that patients with 22q11DS fail to develop normal structural connections between medial DMN nodes. This suggests the presence of altered neurodevelopmental trajectories in 22q11DS.

15.
Brain Topogr ; 27(6): 808-21, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24562717

ABSTRACT

The clinical picture associated with 22q11.2 deletion syndrome (22q11DS) includes mild mental retardation and an increased risk of schizophrenia. While the clinical phenotype has been related to structural brain network alterations, there is only scarce information about functional connectivity in 22q11DS. However, such studies could lead to a better comprehension of the disease and reveal potential biomarkers for psychosis. A connectivity decoding approach was used to discriminate between 42 patients with 22q11DS and 41 controls using resting-state connectivity. The same method was then applied within the 22q11DS group to identify brain connectivity patterns specifically related to the presence of psychotic symptoms. An accuracy of 84 % was achieved in differentiating patients with 22q11DS from controls. The discriminative connections were widespread, but predominantly located in the bilateral frontal and right temporal lobes, and were significantly correlated to IQ. An 88 % accuracy was obtained for identification of existing psychotic symptoms within the patients group. The regions containing most discriminative connections included the anterior cingulate cortex (ACC), the left superior temporal and the right inferior frontal gyri. Functional connectivity alterations in 22q11DS affect mostly frontal and right temporal lobes and are related to the syndrome's mild mental retardation. These results also provide evidence that resting-state connectivity can potentially become a biomarker for psychosis and that ACC plays an important role in the development of psychotic symptoms.


Subject(s)
22q11 Deletion Syndrome/physiopathology , Brain/physiopathology , Psychotic Disorders/diagnosis , 22q11 Deletion Syndrome/complications , Adolescent , Adult , Biomarkers , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Rest/physiology , Young Adult
16.
Front Hum Neurosci ; 7: 750, 2013.
Article in English | MEDLINE | ID: mdl-24265612

ABSTRACT

The structural correlates of functional dysconnectivity in autism spectrum disorders (ASD) have been seldom explored, despite the fact that altered functional connectivity is one of the most frequent neuropathological observations in the disorder. We analyzed cerebral morphometry and structural connectivity using multi-modal imaging for 11 children/adolescents with ASD and 11 matched controls. We estimated regional cortical and white matter volumes, as well as vertex-wise measures of cortical thickness and local Gyrification Index (lGI). Diffusion Tensor Images (DTI) were used to measure Fractional Anisotropy (FA) and tractography estimates of short- and long-range connectivity. We observed four clusters of lGI reduction in patients with ASD, three were located in the right inferior frontal region extending to the inferior parietal lobe, and one was in the right medial parieto-occipital region. Reduced volume was found in the anterior corpus callosum, along with fewer inter-hemispheric frontal streamlines. Despite the spatial correspondence of decreased gyrification and reduced long connectivity, we did not observe any significant relationship between the two. However, a positive correlation between lGI and local connectivity was present in all four clusters in patients with ASD. Reduced gyrification in the inferior fronto-parietal and posterior medial cortical regions lends support for early-disrupted cortical growth in both the mirror neuron system and midline structures responsible for social cognition. Early impaired neurodevelopment in these regions may represent an initial substrate for altered maturation in the cerebral networks that support complex social skills. We also demonstrate that gyrification changes are related to connectivity. This supports the idea that an imbalance between short- and long-range white matter tracts not only impairs the integration of information from multiple neural systems, but also alters the shape of the brain early on in autism.

SELECTION OF CITATIONS
SEARCH DETAIL
...