Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766016

ABSTRACT

Background: Adverse childhood experiences (ACEs) are associated with numerous detriments in health, including increased vulnerability to psychiatric illnesses. Early life stress (ELS) in rodents has been shown to effectively model several of the behavioral and endocrine impacts of ACEs and has been utilized to investigate the underlying mechanisms contributing to disease. However, the precise neural mechanisms responsible for mediating the impact of ELS on vulnerability to psychiatric illnesses remain largely unknown. Methods: We use behavior, immunoassay, in vivo LFP recording, histology, and patch clamp to describe the effects of ELS on stress behaviors, endocrinology, network states, protein expression, and cellular physiology in male and female mice. Results: We demonstrate that a murine maternal separation (MS) ELS model causes sex-dependent alterations in behavioral and hormonal responses following an acute stressor. Local field potential (LFP) recordings in the basolateral amygdala (BLA) and frontal cortex (FC) reveal similar sex-dependent alterations at baseline, in response to acute ethological stress, and during fear memory extinction, supporting a large body of literature demonstrating that these network states contribute to stress reactivity and vulnerability to psychiatric illnesses. Sex differences were accompanied by altered physiology of BLA principal neurons in males and BLA PV interneurons in females. Conclusions: Collectively, these results implicate novel, sex-dependent mechanisms through which ACEs may impact psychiatric health, involving altered cellular physiology and network states involved in emotional processing.

2.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37745617

ABSTRACT

Motivated behaviors, such as social interactions, are governed by the interplay between mesocorticolimbic structures, such as the ventral tegmental area (VTA), basolateral amygdala (BLA), and medial prefrontal cortex (mPFC). Adverse childhood experiences and early life stress (ELS) can impact these networks and behaviors, which is associated with increased risk for psychiatric illnesses. While it is known that the VTA projects to both the BLA and mPFC, the influence of these inputs on local network activity which govern behavioral states - and whether ELS impacts VTA-mediated network communication - remains unknown. Our study demonstrates that VTA inputs influence BLA oscillations and mPFC activity, and that ELS weakens the ability of the VTA to coordinate BLA network states, likely due to ELS-induced impairments in dopamine signaling between the VTA and BLA. Consequently, ELS mice exhibit increased social avoidance, which can be recapitulated in control mice by inhibiting VTA-BLA communication. These data suggest that ELS impacts social reward via the VTA-BLA dopamine network.

3.
Cereb Cortex ; 33(7): 3401-3420, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35849820

ABSTRACT

Sensory neurons parse millisecond-variant sound streams like birdsong and speech with exquisite precision. The auditory pallial cortex of vocal learners like humans and songbirds contains an unconventional neuromodulatory system: neuronal expression of the estrogen synthesis enzyme aromatase. Local forebrain neuroestrogens fluctuate when songbirds hear a song, and subsequently modulate bursting, gain, and temporal coding properties of auditory neurons. However, the way neuroestrogens shape intrinsic and synaptic properties of sensory neurons remains unknown. Here, using a combination of whole-cell patch clamp electrophysiology and calcium imaging, we investigate estrogenic neuromodulation of auditory neurons in a region resembling mammalian auditory association cortex. We found that estradiol rapidly enhances the temporal precision of neuronal firing via a membrane-bound G-protein coupled receptor and that estradiol rapidly suppresses inhibitory synaptic currents while sparing excitation. Notably, the rapid suppression of intrinsic excitability by estradiol was predicted by membrane input resistance and was observed in both males and females. These findings were corroborated by analysis of in vivo electrophysiology recordings, in which local estrogen synthesis blockade caused acute disruption of the temporal correlation of song-evoked firing patterns. Therefore, on a modulatory timescale, neuroestrogens alter intrinsic cellular properties and inhibitory neurotransmitter release to regulate the temporal precision of higher-order sensory neurons.


Subject(s)
Auditory Cortex , Finches , Humans , Male , Animals , Female , Estrogens/pharmacology , Finches/metabolism , Vocalization, Animal/physiology , Estradiol , Auditory Cortex/physiology , Neurons/physiology , Mammals/metabolism
4.
Curr Biol ; 31(13): 2831-2843.e6, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33989528

ABSTRACT

In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.


Subject(s)
Songbirds , Telencephalon , Animals , Mammals/genetics , Neurons , Songbirds/genetics , Vertebrates
5.
eNeuro ; 6(5)2019.
Article in English | MEDLINE | ID: mdl-31519696

ABSTRACT

Rodent dorsal medial prefrontal cortex (mPFC), typically prelimbic cortex, is often described as promoting actions such as reward seeking, whereas ventral mPFC, typically infralimbic cortex, is thought to promote response inhibition. However, both dorsal and ventral mPFC are necessary for both expression and suppression of different behaviors, and each region may contribute to different functions depending on the specifics of the behavior tested. To better understand the roles of dorsal and ventral mPFC in motivated behavior we pharmacologically inactivated each area during operant fixed ratio 1 (FR1) seeking for a natural reward (sucrose), extinction, cue-induced reinstatement, and progressive ratio (PR) sucrose seeking in male Long-Evans rats. Bilateral inactivation of dorsal mPFC, but not ventral mPFC increased reward seeking during FR1. Inactivation of both dorsal and ventral mPFC decreased seeking during extinction. Bilateral inactivation of ventral mPFC, but not dorsal mPFC decreased reward seeking during cue-induced reinstatement. No effect of inactivation was found during PR. Our data contrast sharply with observations seen during drug seeking and fear conditioning, indicating that previously established roles of dorsal mPFC = going versus ventral mPFC = stopping are not applicable to all motivated behaviors and/or outcomes. Our results indicate that dichotomous functions of dorsal versus ventral mPFC, if they exist, may align better with other models, or may require the development of a new framework in which these multifaceted brain areas play different roles in action control depending on the behavioral context in which they are engaged.


Subject(s)
Behavior, Addictive/psychology , Cues , Extinction, Psychological/physiology , Prefrontal Cortex/physiology , Reward , Sucrose/administration & dosage , Animals , Behavior, Addictive/chemically induced , Extinction, Psychological/drug effects , GABA Agonists/pharmacology , Male , Prefrontal Cortex/drug effects , Rats, Long-Evans , Self Administration
6.
J Comp Neurol ; 525(17): 3636-3652, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28758205

ABSTRACT

A fast, neuromodulatory role for estrogen signaling has been reported in many regions of the vertebrate brain. Regional differences in the cellular distribution of aromatase (estrogen synthase) in several species suggest that mechanisms for neuroestrogen signaling differ between and even within brain regions. A more comprehensive understanding of neuroestrogen signaling depends on characterizing the cellular identities of neurons that express aromatase. Calcium-binding proteins such as parvalbumin and calbindin are molecular markers for interneuron subtypes, and are co-expressed with aromatase in human temporal cortex. Songbirds like the zebra finch have become important models to understand the brain synthesis of steroids like estrogens and the implications for neurobiology and behavior. Here, we investigated the regional differences in cytoarchitecture and cellular identities of aromatase-expressing neurons in the auditory and sensorimotor forebrain of zebra finches. Aromatase was co-expressed with parvalbumin in the caudomedial nidopallium (NCM) and HVC shelf (proper name) but not in the caudolateral nidopallium (NCL) or hippocampus. By contrast, calbindin was not co-expressed with aromatase in any region investigated. Notably, aromatase-expressing neurons were found in dense somato-somatic clusters, suggesting a coordinated release of local neuroestrogens from clustered neurons. Aromatase clusters were also more abundant and tightly packed in the NCM of males as compared to females. Overall, this study provides new insights into neuroestrogen regulation at the network level, and extends previous findings from human cortex by identifying a subset of aromatase neurons as putative inhibitory interneurons.


Subject(s)
Estrogens/metabolism , Finches/anatomy & histology , Neurons/metabolism , Prosencephalon/cytology , Analysis of Variance , Animals , Aromatase/metabolism , Calcium-Binding Proteins/metabolism , Disks Large Homolog 4 Protein/metabolism , Female , Male , Microscopy, Confocal , Neural Pathways/metabolism , Neurons/classification , Phosphopyruvate Hydratase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...