Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 6: 6743, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25814169

ABSTRACT

Giant resonances are collective excitation modes for many-body systems of fermions governed by a mean field, such as the atomic nuclei. The microscopic origin of such modes is the coherence among elementary particle-hole excitations, where a particle is promoted from an occupied state below the Fermi level (hole) to an empty one above the Fermi level (particle). The same coherence is also predicted for the particle-particle and the hole-hole excitations, because of the basic quantum symmetry between particles and holes. In nuclear physics, the giant modes have been widely reported for the particle-hole sector but, despite several attempts, there is no precedent in the particle-particle and hole-hole ones, thus making questionable the aforementioned symmetry assumption. Here we provide experimental indications of the Giant Pairing Vibration, which is the leading particle-particle giant mode. An immediate implication of it is the validation of the particle-hole symmetry.

2.
Phys Rev Lett ; 112(4): 042502, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24580444

ABSTRACT

Energies and spectroscopic factors of the first 7/2-, 3/2-, 1/2-, and 5/2- states in the (35)Si21 nucleus were determined by means of the (d, p) transfer reaction in inverse kinematics at GANIL using the MUST2 and EXOGAM detectors. By comparing the spectroscopic information on the Si35 and S37 isotones, a reduction of the p3/2-p1/2 spin-orbit splitting by about 25% is proposed, while the f7/2-f5/2 spin-orbit splitting seems to remain constant. These features, derived after having unfolded nuclear correlations using shell model calculations, have been attributed to the properties of the two-body spin-orbit interaction, the amplitude of which is derived for the first time in an atomic nucleus. The present results, remarkably well reproduced by using several realistic nucleon-nucleon forces, provide a unique touchstone for the modeling of the spin-orbit interaction in atomic nuclei.

3.
Phys Rev Lett ; 103(15): 152503, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19905630

ABSTRACT

An excited state in the proton-rich unbound nucleus 12O was identified at 1.8(4) MeV via missing-mass spectroscopy with the 14O(p,t) reaction at 51 AMeV. The spin-parity of the state was determined to be 0+ or 2+ by comparing the measured differential cross sections with distorted-wave calculations. The lowered location of the excited state in 12O indicates the breakdown of the major shell closure at Z=8 near the proton drip line. This demonstrates the persistence of mirror symmetry in the disappearance of the magic number 8 between 12O and its mirror partner 12Be.

4.
Phys Rev Lett ; 101(21): 212503, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-19113406

ABSTRACT

Coulomb excitation of the exotic neutron-rich nucleus (26)Ne on a (208)Pb target was measured at 58 MeV/u in order to search for low-lying E1 strength above the neutron emission threshold. This radioactive beam experiment was carried out at the RIKEN Accelerator Research Facility. Using the invariant mass method in the 25Ne+n channel, we observe a sizable amount of E1 strength between 6 and 10 MeV excitation energy. By performing a multipole decomposition of the differential cross section, a reduced dipole transition probability of B(E1)=0.49+/-0.16e(2) fm(2) is deduced, corresponding to 4.9+/-1.6% of the Thomas-Reiche-Kuhn sum rule. For the first time, the decay pattern of low-lying strength in a neutron-rich nucleus is measured. The extracted decay pattern is not consistent with several mean-field theory descriptions of the pygmy states.

5.
Phys Rev Lett ; 101(3): 032701, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18764247

ABSTRACT

Angular distributions for 1n and 2n transfer are reported for the 6He+65Cu system at E_{lab}=22.6 MeV. For the first time, triple coincidences between alpha particles, neutrons, and characteristic gamma rays from the targetlike residues were used to separate the contributions arising from 1n and 2n transfer. The differential cross sections for these channels, elastic scattering, and fusion were analyzed using a coupled reaction channels approach. The large measured ratio of the 2n-to-1n cross section and the strong influence of 2n transfer on other channels indicate that the dineutron configuration of 6He plays a dominant role in the reaction mechanism.

6.
Phys Rev Lett ; 100(4): 042501, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18352262

ABSTRACT

The isoscalar giant monopole resonance (GMR) and giant quadrupole resonance (GQR) have been measured in the 56Ni unstable nucleus by inducing the 56Ni(d,d') reaction at 50A MeV in the Maya active target at the GANIL facility. The GMR and GQR centroids are measured at 19.3+/-0.5 MeV and 16.2+/-0.5 MeV, respectively. The corresponding angular distributions are extracted from 3 degrees to 7 degrees . A multipole decomposition analysis using distorted wave Born approximation with random phase approximation transition densities shows that both the GMR and the GQR exhaust a large fraction of the energy-weighted sum rule. The demonstration of this new method opens a broad range of giant resonance studies at intermediate-energy radioactive beam facilities.

7.
Phys Rev Lett ; 97(9): 092501, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-17026356

ABSTRACT

The N = 28 shell closure has been investigated via the 46Ar(d,p)47Ar transfer reaction in inverse kinematics. Energies and spectroscopic factors of the neutron p(3/2), p(1/2), and f(5/2) states in 47Ar were determined and compared to those of the 49Ca isotone. We deduced a reduction of the N = 28 gap by 330(90) keV and spin-orbit weakenings of approximately 10(2) and 45(10)% for the f and p states, respectively. Such large variations for the f and p spin-orbit splittings could be accounted for by the proton-neutron tensor force and by the density dependence of the spin-orbit interaction, respectively. This contrasts with the picture of the spin-orbit interaction as a surface term only.

8.
Phys Rev Lett ; 96(1): 012501, 2006 Jan 13.
Article in English | MEDLINE | ID: mdl-16486448

ABSTRACT

To investigate the behavior of the N = 14 neutron gap far from stability with a neutron-sensitive probe, proton elastic and 2(1)+ inelastic scattering angular distributions for the neutron-rich nucleus 22O were measured using the MUr à STrip detector array at the Grand Accélérateur National d'Ions Lourds facility. A deformation parameter beta(p,p') = 0.26 +/- 0.04 is obtained for the 2(1)+ state, much lower than in 20O, showing a weak neutron contribution to this state. A microscopic analysis was performed using matter and transition densities generated by continuum Skyrme-Hartree-Fock-Bogoliubov and quasiparticle random phase approximation calculations, respectively. The ratio of neutron to proton contributions to the 2(1)+ state is found close to the N/Z ratio, demonstrating a strong N = 14 shell closure in the vicinity of the neutron drip line.

9.
Phys Rev Lett ; 97(24): 242502, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17280273

ABSTRACT

Inelastic scattering of 40Ca on 40Ca at 50 MeV/A has been measured in coincidence with protons at the GANIL facility. The SPEG spectrometer was associated with 240 CsI(Tl) scintillators of the INDRA 4pi array, allowing for the measurement of complete decay events. The missing energy method was applied to these events. For events with excitation energy between 42 and 55 MeV, a direct decay branch by three protons towards the low energy states of 37Cl gives the first evidence for a 3-phonon state built with giant resonances.

10.
Phys Rev Lett ; 88(9): 092501, 2002 Mar 04.
Article in English | MEDLINE | ID: mdl-11863997

ABSTRACT

The neutron-rich (66,68)Ni have been produced at GANIL via interactions of a 65.9A MeV 70Zn beam with a 58Ni target. Their reduced transition probability B(E2;0(+)(1)-->2+) has been measured for the first time by Coulomb excitation in a (208)Pb target at intermediate energy. The B(E2) value for (68)Ni(40) is unexpectedly small. An analysis in terms of large scale shell model calculations stresses the importance of proton core excitations to reproduce the B(E2) values and indicates the erosion of the N = 40 harmonic-oscillator subshell by neutron-pair scattering.

11.
Phys Rev Lett ; 87(7): 072701, 2001 Aug 13.
Article in English | MEDLINE | ID: mdl-11497888

ABSTRACT

The energetic proton emission has been investigated as a function of the reaction centrality for the system (58)Ni + (58)Ni at 30A MeV. Extremely energetic protons (E(NN)(p) > or = 130 MeV) were measured and their multiplicity is found to increase almost quadratically with the number of participant nucleons, thus indicating the onset of a mechanism beyond one- and two-body dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...