Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 18001, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31767939

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sci Rep ; 9(1): 7310, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31086242

ABSTRACT

The development of black inks has enabled writing to become an established method of communication in history. Although a large research effort has been devoted to the study of pigments and dyes used in ancient Egypt to decorate burial walls and furnishings, or to write on papyrus, to date little attention has been paid to the nature and technology of inks used on ritual and daily-use textiles, which may have fostered the transfer of metallic ink technology onto papyrus and parchment supports. We report about inks from 15th century BCE Egyptian textiles by combining non-invasive techniques, including ultraviolet (UV) reflected imaging, near-infrared reflectography (NIRR), X-ray fluorescence (XRF) spectroscopy, Raman spectroscopy and prompt-gamma-activation-analysis (PGAA). It is argued that the inks are related to the family of iron gall inks, whose introduction is commonly attributed to the third century BCE. This interpretation frames the technology of writing on fabrics, used by the ancient Egyptians, in a different time, thus providing new information on the genesis of mordant inks in the ancient Mediterranean cultures. We anticipate our study to be a starting point for further and more sophisticated investigations of textiles, which will clarify the origin of metallic ink in the ancient world.

3.
Article in English | MEDLINE | ID: mdl-29902771

ABSTRACT

The study of both original and decaying compounds is relevant in understanding the chemistry behind the deterioration processes, above all in open museum contexts where environmental stressors affect the artefacts. In this sense, a combination of non-invasive spectroscopy techniques (Raman spectroscopy, µ-X-ray fluorescence and X-ray diffraction) was applied on an ancient Roman building (130 CE), the "Casa di Diana" Mithraeum at Ostia Antica archaeological site. The aim is to study the raw materials, manufacturing and decaying products of the two observed types of Roman fired bricks (red and yellow) that compose the building. The present study estimates an illite raw material of carbonate-bearing marine clay likely referring to the common deposits of central/southern Italy, which contain calcite as accessory phase and a-plastic fraction constituted by quartz, feldspar and opaques. This clay material was added with volcanic temper characterised by abundant clinopyroxene and analcime (from analcimization of leucite) that are typical of the Roman Province volcanism. The firing would be probably the result of oxidizing conditions, as proved by the hematite presence. Thanks to the existence of specific neoformed mineral phases during firing it was possible to assess different temperatures ranges. In detail, the red/orange bricks, for the existence of gehlenite (formed from calcite and its reaction with silicates), were fired at 800-900 °C range; whereas, the yellow ones are characterised by the lack of gehlenite and the disappearance of illite/muscovite, which indicates firing temperature at over 900 °C. Regarding the decaying products, the gypsum covers most of the surface of most bricks, both red and the yellow ones, but these latter are more susceptible to environmental stressors (sulphates and carbonates). Therefore, this work points out how by integrated non-invasive approaches it is possible trace back to original firing temperature, technology of manufacture, interpreting ceramic data.

4.
Sci Total Environ ; 566-567: 298-305, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27232960

ABSTRACT

Roman hypogea, vernacular settlements or crypts, are underground places characterised by specific and unique challenges (RH<90% and almost constant temperature throughout the whole year) related to their relative isolation from the outdoor environment. These sites often require adequate monitoring tools providing complete environmental information in order to carry out appropriate strategies for scheduling routine maintenance and designing suitable layouts for their preservation. In this work we present the results of a carefully planned thermo-hygrometric monitoring campaign conducted in a peculiar Roman building (130CE), the "Casa di Diana" Mithraeum, sited in Ostia Antica (archaeological site, Rome-Italy), with the aim of characterising the indoor environment as the structure suffers of several conservation problems (biocolonisation, efflorescences, evaporating and condensing cycle for wall-building materials). The campaign involving multipoint continuous measurement was carefully planned to better describe this micro-clime. In addition to underground environmental data available in literature, we have also performed, as a checkpoint control, a thermo-hygrometric monitoring campaign in the "Terme di Mitra" Hypogeum, a few meters from the "Casa di Diana". The recorded data was analysed by multivariate statistical and chemometric analyses. The results brought to light the presence of different microclimates (three areas) within a single Mithraeum: a room (pre-Mithraeum) and an area (Mithraeum: 2-4m) present a thermo-hygrometric environmental behaviour in accordance with a semi-confined environment, another area (Mithraeum: 1-2m) behaves accordingly with underground environments (although it cannot be described as such), and the last area (Mithraeum: 0-1m) where was recording RH values close to saturation (96-99%), associated with non-ventilated areas where the rising damp is "held" and not dispersed, describing an own micro-clime, comparable to a "small greenhouse". This study has allowed to identify some critical areas in view of planning future conservation solutions, without exporting the artefacts kept inside.

5.
Environ Sci Pollut Res Int ; 23(13): 13403-12, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27026542

ABSTRACT

The microclimatic parameters (Ta, RH, E, and CO2) reflect the indoor quality of the environment. Their relationship, connected with the design of the building, can facilitate the growth of photo/heterotrophic organisms and therefore facilitate the increase of the relative CO2 production. Taking this into account, the impact of biological proliferation in a historical building is discussed for the Mithraeum of "Casa di Diana" in the archaeological site of Ostia Antica, which is subjected to guided tours. In this work, for the first time, we propose a study on biological monitoring to evaluate the contribution of bioactivity to air quality, with the objective to increase the comfort of visitors and to open the site for more than one day per week, suggesting possible tools providing a good compromise between building conservation and human comfort. In the sense, it has been possible to distinguish the contribution of the plants from the one deriving from humans: high values of carbon dioxide have been recorded during the night and its scarce removal during the day (air flow). The window present is not sufficient to eliminate the CO2, involving concentrations of CO2 relatively high in comparison to the proposed limits and guidelines defined by law. The obtained results strongly encouraged the elimination of flora in order to increase the comfort of visitors and to open the house for more than one day per week. Although, this process involves an important economic effort, the present study allows making an objective decision which has an important value in a cultural heritage management. Graphical Abstract CO2 contribute by bioactivity as damage to human health.


Subject(s)
Air Pollution, Indoor/analysis , Carbon Dioxide/analysis , Archaeology , Chlorophyta , Cyanobacteria/isolation & purification , Environmental Monitoring/methods , Italy , Lichens , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...