Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Mil Med Res ; 11(1): 27, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685116

ABSTRACT

BACKGROUND: The channel-forming protein Pannexin1 (Panx1) has been implicated in both human studies and animal models of chronic pain, but the underlying mechanisms remain incompletely understood. METHODS: Wild-type (WT, n = 24), global Panx1 KO (n = 24), neuron-specific Panx1 KO (n = 20), and glia-specific Panx1 KO (n = 20) mice were used in this study at Albert Einstein College of Medicine. The von Frey test was used to quantify pain sensitivity in these mice following complete Freund's adjuvant (CFA) injection (7, 14, and 21 d). The qRT-PCR was employed to measure mRNA levels of Panx1, Panx2, Panx3, Cx43, Calhm1, and ß-catenin. Laser scanning confocal microscopy imaging, Sholl analysis, and electrophysiology were utilized to evaluate the impact of Panx1 on neuronal excitability and morphology in Neuro2a and dorsal root ganglion neurons (DRGNs) in which Panx1 expression or function was manipulated. Ethidium bromide (EtBr) dye uptake assay and calcium imaging were employed to investigate the role of Panx1 in adenosine triphosphate (ATP) sensitivity. ß-galactosidase (ß-gal) staining was applied to determine the relative cellular expression levels of Panx1 in trigeminal ganglia (TG) and DRG of transgenic mice. RESULTS: Global or neuron-specific Panx1 deletion markedly decreased pain thresholds after CFA stimuli (7, 14, and 21 d; P < 0.01 vs. WT group), indicating that Panx1 was positively correlated with pain sensitivity. In Neuro2a, global Panx1 deletion dramatically reduced neurite extension and inward currents compared to the WT group (P < 0.05), revealing that Panx1 enhanced neurogenesis and excitability. Similarly, global Panx1 deletion significantly suppressed Wnt/ß-catenin dependent DRG neurogenesis following 5 d of nerve growth factor (NGF) treatment (P < 0.01 vs. WT group). Moreover, Panx1 channels enhanced DRG neuron response to ATP after CFA injection (P < 0.01 vs. Panx1 KO group). Furthermore, ATP release increased Ca2+ responses in DRGNs and satellite glial cells surrounding them following 7 d of CFA treatment (P < 0.01 vs. Panx1 KO group), suggesting that Panx1 in glia also impacts exaggerated neuronal excitability. Interestingly, neuron-specific Panx1 deletion was found to markedly reduce differentiation in cultured DRGNs, as evidenced by stunted neurite outgrowth (P < 0.05 vs. Panx1 KO group; P < 0.01 vs. WT group or GFAP-Cre group), blunted activation of Wnt/ß-catenin signaling (P < 0.01 vs. WT, Panx1 KO and GFAP-Cre groups), and diminished cell excitability (P < 0.01 vs. GFAP-Cre group) and response to ATP stimulation (P < 0.01 vs. WT group). Analysis of ß-gal staining showed that cellular expression levels of Panx1 in neurons are significantly higher (2.5-fold increase) in the DRG than in the TG. CONCLUSIONS: The present study revealed that neuronal Panx1 is a prominent driver of peripheral sensitivity in the setting of inflammatory pain through cell-autonomous effects on neuronal excitability. This hyperexcitability dependence on neuronal Panx1 contrasts with inflammatory orofacial pain, where similar studies revealed a prominent role for glial Panx1. The apparent differences in Panx1 expression in neuronal and non-neuronal TG and DRG cells are likely responsible for the distinct impact of these cell types in the two pain models.


Subject(s)
Connexins , Nerve Tissue Proteins , Animals , Connexins/genetics , Mice , Nerve Tissue Proteins/genetics , Disease Models, Animal , Pain/physiopathology , Pain/etiology , Neurons/metabolism , Inflammation/physiopathology , Mice, Knockout , Male
2.
Glia ; 72(5): 938-959, 2024 May.
Article in English | MEDLINE | ID: mdl-38362923

ABSTRACT

In the adult brain, the water channel aquaporin-4 (AQP4) is expressed in astrocyte endfoot, in supramolecular assemblies, called "Orthogonal Arrays of Particles" (OAPs) together with the transient receptor potential vanilloid 4 (TRPV4), finely regulating the cell volume. The present study aimed at investigating the contribution of AQP4 and TRPV4 to CNS early postnatal development using WT and AQP4 KO brain and retina and neuronal stem cells (NSCs), as an in vitro model of astrocyte differentiation. Western blot analysis showed that, differently from AQP4 and the glial cell markers, TRPV4 was downregulated during CNS development and NSC differentiation. Blue native/SDS-PAGE revealed that AQP4 progressively organized into OAPs throughout the entire differentiation process. Fluorescence quenching assay indicated that the speed of cell volume changes was time-related to NSC differentiation and functional to their migratory ability. Calcium imaging showed that the amplitude of TRPV4 Ca2+ transient is lower, and the dynamics are changed during differentiation and suppressed in AQP4 KO NSCs. Overall, these findings suggest that early postnatal neurodevelopment is subjected to temporally modulated water and Ca2+ dynamics likely to be those sustaining the biochemical and physiological mechanisms responsible for astrocyte differentiation during brain and retinal development.


Subject(s)
Astrocytes , TRPV Cation Channels , Astrocytes/metabolism , TRPV Cation Channels/metabolism , Aquaporin 4/metabolism , Neuroglia/metabolism , Brain/metabolism
3.
PLoS One ; 18(12): e0295710, 2023.
Article in English | MEDLINE | ID: mdl-38100403

ABSTRACT

Pannexins are ubiquitously expressed in human and mouse tissues. Pannexin 1 (Panx1), the most thoroughly characterized member of this family, forms plasmalemmal membrane channels permeable to relatively large molecules, such as ATP. Although human and mouse Panx1 amino acid sequences are conserved in the presently known regulatory sites involved in trafficking and modulation of the channel, differences are reported in the N- and C-termini of the protein, and the mechanisms of channel activation by different stimuli remain controversial. Here we used a neuroblastoma cell line to study the activation properties of endogenous mPanx1 and exogenously expressed hPanx1. Dye uptake and electrophysiological recordings revealed that in contrast to mouse Panx1, the human ortholog is insensitive to stimulation with high extracellular [K+] but responds similarly to activation of the purinergic P2X7 receptor. The two most frequent Panx1 polymorphisms found in the human population, Q5H (rs1138800) and E390D (rs74549886), exogenously expressed in Panx1-null N2a cells revealed that regarding P2X7 receptor mediated Panx1 activation, the Q5H mutant is a gain of function whereas the E390D mutant is a loss of function variant. Collectively, we demonstrate differences in the activation between human and mouse Panx1 orthologs and suggest that these differences may have translational implications for studies where Panx1 has been shown to have significant impact.


Subject(s)
Connexins , Neural Stem Cells , Humans , Adenosine Triphosphate/metabolism , Cell Line , Cell Membrane/metabolism , Connexins/genetics , Connexins/metabolism , Neural Stem Cells/metabolism
4.
ASN Neuro ; 15: 17590914231184712, 2023.
Article in English | MEDLINE | ID: mdl-37365910

ABSTRACT

Pannexin 1 (Panx1) is an ubiquitously expressed protein that forms plasma membrane channels permeable to anions and moderate-sized signaling molecules (e.g., ATP, glutamate). In the nervous system, activation of Panx1 channels has been extensively shown to contribute to distinct neurological disorders (epilepsy, chronic pain, migraine, neuroAIDS, etc.), but knowledge of the extent to which these channels have a physiological role remains restricted to three studies supporting their involvement in hippocampus dependent learning. Given that Panx1 channels may provide an important mechanism for activity-dependent neuron-glia interaction, we used Panx1 transgenic mice with global and cell-type specific deletions of Panx1 to interrogate their participation in working and reference memory. Using the eight-arm radial maze, we show that long-term spatial reference memory, but not spatial working memory, is deficient in Panx1-null mice and that both astrocyte and neuronal Panx1 contribute to the consolidation of long-term spatial memory. Field potential recordings in hippocampal slices of Panx1-null mice revealed an attenuation of both long-term potentiation (LTP) of synaptic strength and long-term depression (LTD) at Schaffer collateral-CA1 synapses without alterations of basal synaptic transmission or pre-synaptic paired-pulse facilitation. Our results implicate both neuronal and astrocyte Panx1 channels as critical players for the development and maintenance of long-term spatial reference memory in mice.


Subject(s)
Astrocytes , Neurons , Mice , Animals , Astrocytes/metabolism , Neurons/metabolism , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Hippocampus/metabolism , Synapses/metabolism , Mice, Transgenic , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Connexins/genetics , Connexins/metabolism
5.
bioRxiv ; 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36711845

ABSTRACT

Pannexin 1 (Panx1) are ubiquitously expressed proteins that form plasma membrane channels permeable to anions and moderate sized signaling molecules (e.g., ATP, glutamate). In the nervous system, activation of Panx1 channels have been extensively shown to contribute to distinct neurological disorders (epilepsy, chronic pain, migraine, neuroAIDS, etc.) but knowledge of extent to which these channels have a physiological role remains restricted to three studies supporting their involvement in hippocampus dependent learning. Given that Panx1 channels may provide an important mechanism for activity-dependent neuron-glia interaction, we used Panx1 transgenic mice with global and cell-type specific deletions of Panx1 to interrogate their participation in working and reference memory. Using the 8-arm radial maze, we show that long-term spatial reference memory, but not spatial working memory, is deficient in Panx1-null mice and that both astrocyte and neuronal Panx1 contribute to the consolidation of long-term spatial memory. Field potential recordings in hippocampal slices of Panx1-null mice revealed an attenuation of both long-term potentiation (LTP) of synaptic strength and long-term depression (LTD) at Schaffer collateral - CA1 synapses without alterations basal synaptic transmission or pre-synaptic paired-pulse facilitation. Our results implicate both neuronal and astrocyte Panx1 channels as critical players for the development and maintenance of long-term spatial reference memory in mice.

6.
Cells ; 11(20)2022 10 14.
Article in English | MEDLINE | ID: mdl-36291086

ABSTRACT

Pannexin1 (Panx1) is expressed in both neurons and glia where it forms ATP-permeable channels that are activated under pathological conditions such as epilepsy, migraine, inflammation, and ischemia. Membrane lipid composition affects proper distribution and function of receptors and ion channels, and defects in cholesterol metabolism are associated with neurological diseases. In order to understand the impact of membrane cholesterol on the distribution and function of Panx1 in neural cells, we used fluorescence recovery after photobleaching (FRAP) to evaluate its mobility and electrophysiology and dye uptake to assess channel function. We observed that cholesterol extraction (using methyl-ß-cyclodextrin) and inhibition of its synthesis (lovastatin) decreased the lateral diffusion of Panx1 in the plasma membrane. Panx1 channel activity (dye uptake, ATP release and ionic current) was enhanced in cholesterol-depleted Panx1 transfected cells and in wild-type astrocytes compared to non-depleted or Panx1 null cells. Manipulation of cholesterol levels may, therefore, offer a novel strategy by which Panx1 channel activation might modulate various pathological conditions.


Subject(s)
Astrocytes , Cholesterol , Connexins , Nerve Tissue Proteins , Neuroblastoma , Humans , Adenosine Triphosphate/metabolism , Anticholesteremic Agents/pharmacology , Astrocytes/metabolism , Cholesterol/metabolism , Connexins/metabolism , Ion Channels/metabolism , Lovastatin/pharmacology , Membrane Lipids/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuroblastoma/metabolism , Protein Stability
7.
Sci Rep ; 11(1): 24334, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934080

ABSTRACT

The neurovascular unit (NVU) consists of cells intrinsic to the vessel wall, the endothelial cells and pericytes, and astrocyte endfeet that surround the vessel but are separated from it by basement membrane. Endothelial cells are primarily responsible for creating and maintaining blood-brain-barrier (BBB) tightness, but astrocytes contribute to the barrier through paracrine signaling to the endothelial cells and by forming the glia limitans. Gap junctions (GJs) between astrocyte endfeet are composed of connexin 43 (Cx43) and Cx30, which form plaques between cells. GJ plaques formed of Cx43 do not diffuse laterally in the plasma membrane and thus potentially provide stable organizational features to the endfoot domain, whereas GJ plaques formed of other connexins and of Cx43 lacking a large portion of its cytoplasmic carboxyl terminus are quite mobile. In order to examine the organizational features that immobile GJs impose on the endfoot, we have used super-resolution confocal microscopy to map number and sizes of GJ plaques and aquaporin (AQP)-4 channel clusters in the perivascular endfeet of mice in which astrocyte GJs (Cx30, Cx43) were deleted or the carboxyl terminus of Cx43 was truncated. To determine if BBB integrity was compromised in these transgenic mice, we conducted perfusion studies under elevated hydrostatic pressure using horseradish peroxide as a molecular probe enabling detection of micro-hemorrhages in brain sections. These studies revealed that microhemorrhages were more numerous in mice lacking Cx43 or its carboxyl terminus. In perivascular domains of cerebral vessels, we found that density of Cx43 GJs was higher in the truncation mutant, while GJ size was smaller. Density of perivascular particles formed by AQP4 and its extended isoform AQP4ex was inversely related to the presence of full length Cx43, whereas the ratio of sizes of the particles of the AQP4ex isoform to total AQP4 was directly related to the presence of full length Cx43. Confocal analysis showed that Cx43 and Cx30 were substantially colocalized in astrocyte domains near vasculature of truncation mutant mice. These results showing altered distribution of some astrocyte nexus components (AQP4 and Cx30) in Cx43 null mice and in a truncation mutant, together with leakier cerebral vasculature, support the hypothesis that localization and mobility of gap junction proteins and their binding partners influences organization of astrocyte endfeet which in turn impacts BBB integrity of the NVU.


Subject(s)
Aquaporin 4/metabolism , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Cell Membrane Permeability , Connexin 43/physiology , Connexins/metabolism , Endothelium, Vascular/metabolism , Animals , Aquaporin 4/chemistry , Aquaporin 4/genetics , Connexins/chemistry , Connexins/genetics , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Gap Junction alpha-5 Protein
8.
iScience ; 24(12): 103478, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34841222

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly rampaged worldwide, causing a pandemic of coronavirus disease (COVID -19), but the biology of SARS-CoV-2 remains under investigation. We demonstrate that both SARS-CoV-2 spike protein and human coronavirus 229E (hCoV-229E) or its purified S protein, one of the main viruses responsible for the common cold, induce the transient opening of Pannexin-1 (Panx-1) channels in human lung epithelial cells. However, the Panx-1 channel opening induced by SARS-CoV-2 is greater and more prolonged than hCoV-229E/S protein, resulting in an enhanced ATP, PGE2, and IL-1ß release. Analysis of lung lavages and tissues indicate that Panx-1 mRNA expression is associated with increased ATP, PGE2, and IL-1ß levels. Panx-1 channel opening induced by SARS-CoV-2 spike protein is angiotensin-converting enzyme 2 (ACE-2), endocytosis, and furin dependent. Overall, we demonstrated that Panx-1 channel is a critical contributor to SARS-CoV-2 infection and should be considered as an alternative therapy.

9.
ASN Neuro ; 13: 17590914211007273, 2021.
Article in English | MEDLINE | ID: mdl-33910381

ABSTRACT

Pannexin1 (Panx1) is an ATP release channel expressed in neurons and astrocytes that plays important roles in CNS physiology and pathology. Evidence for the involvement of Panx1 in seizures includes the reduction of epileptiform activity and ictal discharges following Panx1 channel blockade or deletion. However, very little is known about the relative contribution of astrocyte and neuronal Panx1 channels to hyperexcitability. To this end, mice with global and cell type specific deletion of Panx1 were used in one in vivo and two in vitro seizure models. In the low-Mg2+in vitro model, global deletion but not cell-type specific deletion of Panx1 reduced the frequency of epileptiform discharges. This reduced frequency of discharges did not impact the overall power spectra obtained from local field potentials. In the in vitro KA model, in contrast, global or cell type specific deletion of Panx1 did not affect the frequency of discharges, but reduced the overall power spectra. EEG recordings following KA-injection in vivo revealed that although global deletion of Panx1 did not affect the onset of status epilepticus (SE), SE onset was delayed in mice lacking neuronal Panx1 and accelerated in mice lacking astrocyte Panx1. EEG power spectral analysis disclosed a Panx1-dependent cortical region effect; while in the occipital region, overall spectral power was reduced in all three Panx1 genotypes; in the frontal cortex, the overall power was not affected by deletion of Panx1. Together, our results show that the contribution of Panx1 to ictal activity is model, cell-type and brain region dependent.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Connexins/deficiency , Disease Models, Animal , Nerve Tissue Proteins/deficiency , Neurons/metabolism , Seizures/metabolism , Animals , Brain/physiopathology , Connexins/genetics , Electroencephalography/methods , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Organ Culture Techniques , Seizures/genetics
10.
J Neurochem ; 158(2): 500-521, 2021 07.
Article in English | MEDLINE | ID: mdl-33899944

ABSTRACT

In healthy conditions, pannexin-1 (Panx-1) channels are in a close state, but in several pathological conditions, including human immunodeficiency virus-1 (HIV) and NeuroHIV, the channel becomes open. However, the mechanism or contribution of Panx-1 channels to the HIV pathogenesis and NeuroHIV is unknown. To determine the contribution of Panx-1 channels to the pathogenesis of NeuroHIV, we used a well-established model of simian immunodeficiency virus (SIV) infection in macaques (Macaca mulatta) in the presence of and absence of a Panx-1 blocker to later examine the synaptic/axonal compromise induced for the virus. Using Golgi's staining, we demonstrated that SIV infection compromised synaptic and axonal structures, especially in the white matter. Blocking Panx-1 channels after SIV infection prevented the synaptic and axonal compromise induced by the virus, especially by maintaining the more complex synapses. Our data demonstrated that targeting Panx-1 channels can prevent and maybe revert brain synaptic compromise induced by SIV infection.


Subject(s)
Connexins/metabolism , HIV Infections/metabolism , HIV-1 , Nerve Tissue Proteins/metabolism , Neurons/pathology , Simian Acquired Immunodeficiency Syndrome/metabolism , Synapses/pathology , Animals , Axons/pathology , Connexins/antagonists & inhibitors , Dendritic Spines/pathology , Gray Matter/pathology , Humans , Macaca mulatta , Nerve Tissue Proteins/antagonists & inhibitors , Virus Replication , White Matter/pathology
11.
Front Cell Neurosci ; 15: 647109, 2021.
Article in English | MEDLINE | ID: mdl-33790744

ABSTRACT

We transduced mouse cortical astrocytes cultured from four litters of embryonic wildtype (WT) and connexin43 (Cx43) null mouse pups with lentiviral vector encoding hTERT and measured expression of astrocyte-specific markers up to passage 10 (p10). The immortalized cell lines thus generated (designated IWCA and IKOCA, respectively) expressed biomarkers consistent with those of neonatal astrocytes, including Cx43 from wildtype but not from Cx43-null mice, lack of Cx30, and presence of Cx26. AQP4, the water channel that is found in high abundance in astrocyte end-feet, was expressed at moderately high levels in early passages, and its mRNA and protein declined to low but still detectable levels by p10. The mRNA levels of the astrocyte biomarkers aldehyde dehydrogenase 1L1 (ALDH1L1), glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP) remained relatively constant during successive passages. GS protein expression was maintained while GFAP declined with cell passaging but was still detectable at p10. Both mRNA and protein levels of glutamate transporter 1 (GLT-1) declined with passage number. Immunostaining at corresponding times was consistent with the data from Western blots and provided evidence that these proteins were expressed at appropriate intracellular locations. Consistent with our goal of generating immortalized cell lines in which Cx43 was either functionally expressed or absent, IWCA cells were found to be well coupled with respect to intercellular dye transfer and similar to primary astrocyte cultures in terms of time course of junction formation, electrical coupling strength and voltage sensitivity. Moreover, barrier function was enhanced in co-culture of the IWCA cell line with bEnd.3 microvascular endothelial cells. In addition, immunostaining revealed oblate endogenous Cx43 gap junction plaques in IWCA that were similar in appearance to those plaques obtained following transfection of IKOCA cells with fluorescent protein tagged Cx43. Re-expression of Cx43 in IKOCA cells allows experimental manipulation of connexins and live imaging of interactions between connexins and other proteins. We conclude that properties of these cell lines resemble those of primary cultured astrocytes, and they may provide useful tools in functional studies by facilitating genetic and pharmacological manipulations in the context of an astrocyte-appropriate cellular environment.

12.
Thromb Res ; 183: 56-62, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31669824

ABSTRACT

BACKGROUND: Hemostasis is a tightly regulated physiological process to rapidly induce hemostatic plugs at sites of vascular injury. Inappropriate activation of this process may lead to thrombosis, i.e. pathological blood clot formation in uninjured vessels or on atherosclerotic lesions. ATP release through Pannexin1 (Panx1) membrane channels contributes to collagen-induced platelet aggregation in vitro. OBJECTIVE: To investigate the effects of genetic and pharmacological inhibition of Panx1 on hemostasis and thrombosis in vivo. RESULTS: Bleeding time after tail clipping was increased by 2.5-fold in Panx1-/- mice compared to wild-type controls, suggesting that Panx1 deficiency impairs primary hemostasis. Wire myography on mesenteric arteries revealed diminished vasoconstriction in response to phenylephrine or U446619 in Panx1-/- mice. Mice with platelet-specific deletion of Panx1 (Panx1PDel) displayed 2-fold longer tail bleeding times than Panx1fl/fl controls. Moreover, venous thromboembolism (VTE) after injection of collagen/epinephrine in the jugular vein was reduced in Panx1-/- and Panx1PDel mice. Panx1PDel mice also showed reduced FeCl3-induced thrombosis in mesenteric arteries. BrilliantBlue-FCF, a Panx1 channel inhibitor, decreased collagen-induced platelet aggregation in vitro, increased tail bleeding time and reduced VTE in wild-type mice. Furthermore, we developed a specific Panx1 blocking antibody targeting a Panx1 extracellular loop, which reduced ATP release from platelets in vitro. Treating wild-type mice with this antibody increased tail bleeding time and decreased VTE compared to control antibody. CONCLUSIONS: Panx1 channel deletion or inhibition diminishes clot formation during hemostasis and thrombosis in vivo. Blocking Panx1 channels may be an attractive strategy for modulating platelet aggregation in thrombotic disease.


Subject(s)
Connexins/antagonists & inhibitors , Hemostasis/physiology , Nerve Tissue Proteins/antagonists & inhibitors , Thrombosis/therapy , Animals , Humans , Male , Mice
13.
ASN Neuro ; 11: 1759091419833502, 2019.
Article in English | MEDLINE | ID: mdl-30862176

ABSTRACT

ATP- and adenosine-mediated signaling are prominent types of glia-glia and glia-neuron interaction, with an imbalance of ATP/adenosine ratio leading to altered states of excitability, as seen in epileptic seizures. Pannexin1 (Panx1), a member of the gap junction family, is an ATP release channel that is expressed in astrocytes and neurons. Previous studies provided evidence supporting a role for purinergic-mediated signaling via Panx1 channels in seizures; using mice with global deletion of Panx1, it was shown that these channels contribute in maintenance of seizures by releasing ATP. However, nothing is known about the extent to which astrocyte and neuronal Panx1 might differently contribute to seizures. We here show that targeted deletion of Panx1 in astrocytes or neurons has opposing effects on acute seizures induced by kainic acid. The absence of Panx1 in astrocytes potentiates while the absence of Panx1 in neurons attenuates seizure manifestation. Immunohistochemical analysis performed in brains of these mice, revealed that adenosine kinase (ADK), an enzyme that regulates extracellular levels of adenosine, was increased only in seized GFAP-Cre:Panx1f/f mice. Pretreating mice with the ADK inhibitor, idotubercidin, improved seizure outcome and prevented the increase in ADK immunoreactivity. Together, these data suggest that the worsening of seizures seen in mice lacking astrocyte Panx1 is likely related to low levels of extracellular adenosine due to the increased ADK levels in astrocytes. Our study not only reveals an unexpected link between Panx1 channels and ADK but also highlights the important role played by astrocyte Panx1 channels in controlling neuronal activity.


Subject(s)
Astrocytes/metabolism , Connexins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Seizures/metabolism , Adenosine Kinase/antagonists & inhibitors , Adenosine Kinase/metabolism , Adenosine Triphosphate/metabolism , Animals , Astrocytes/drug effects , Brain/drug effects , Brain/metabolism , Connexins/genetics , Disease Models, Animal , Epilepsy/drug therapy , Epilepsy/metabolism , Kainic Acid , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neurons/drug effects , Seizures/drug therapy
14.
Neurosci Lett ; 695: 25-31, 2019 03 16.
Article in English | MEDLINE | ID: mdl-28284836

ABSTRACT

It is the current view that purinergic signaling regulates many physiological functions. Pannexin1 (Panx1), a member of the gap junction family of proteins is an ATP releasing channel that plays important physio-pathological roles in various tissues, including the CNS. Upon binding to purinergic receptors expressed in neural cells, ATP triggers cellular responses including increased cell proliferation, cell morphology changes, release of cytokines, and regulation of neuronal excitability via release of glutamate, GABA and ATP itself. Under pathological conditions such as ischemia, trauma, inflammation, and epilepsy, extracellular ATP concentrations increases drastically but the consequences of this surge is still difficult to characterize due to its rapid metabolism in ADP and adenosine, the latter having inhibitory action on neuronal activity. For seizures, for instance, the excitatory effect of ATP on neuronal activity is mainly related to its action of P2X receptors, while the inhibitory effects are related to activation of P1, adenosine receptors. Here we provide a mini review on the properties of pannexins with a main focus on Panx1 and its involvement in seizure activity. Although there are only few studies implicating Panx1 in seizures, they are illustrative of the dual role that Panx1 has on neuronal excitability.


Subject(s)
Connexins/physiology , Nerve Tissue Proteins/physiology , Adenosine Triphosphate/metabolism , Animals , Connexins/chemistry , Connexins/genetics , Connexins/metabolism , Gap Junctions/metabolism , Gap Junctions/physiology , Humans , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/physiology , Signal Transduction
15.
Sci Rep ; 7(1): 13706, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29057961

ABSTRACT

Extracellular ATP is a central signaling molecule in inflammatory responses. Pannexin1 (Panx1) channels release ATP in a controlled manner and have been implicated in various inflammatory pathologies, but their role in atherogenesis remains elusive. Using atherosclerosis-susceptible mouse models with ubiquitous deletion of Panx1 (Panx1 -/- Apoe -/- ) or with Cre recombinase-mediated deletion of Panx1 in endothelial cells and monocytes (Tie2-Cre Tg Panx1 fl/fl Apoe -/- ; Panx1 del Apoe -/- ), we identified a novel role for Panx1 in the lymphatic vasculature. Atherosclerotic lesion development in response to high-cholesterol diet was enhanced in Panx1 del Apoe -/- mice, pointing to an atheroprotective role for Panx1 in endothelial and/or monocytic cells. Unexpectedly, atherogenesis was not changed in mice with ubiquitous Panx1 deletion, but Panx1 -/- Apoe -/- mice displayed reduced body weight, serum cholesterol, triglycerides and free fatty acids, suggesting altered lipid metabolism in these Panx1-deficient mice. Mechanistically, Panx1 -/- Apoe -/- mice showed impairment of lymphatic vessel function with decreased drainage of interstitial fluids and reduced dietary fat absorption. Thus, the detrimental effect of Panx1 deletion in endothelial and/or monocytic cells during atherogenesis is counterbalanced by an opposite effect resulting from impaired lymphatic function in ubiquitous Panx1-deficient mice. Collectively, our findings unveil a pivotal role of Panx1 in linking lymphatic function to lipid metabolism and atherosclerotic plaque development.


Subject(s)
Atherosclerosis/metabolism , Connexins/metabolism , Lipid Metabolism/physiology , Lymphatic Vessels/metabolism , Nerve Tissue Proteins/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/pathology , Body Weight/physiology , Carotid Arteries/metabolism , Carotid Arteries/pathology , Connexins/genetics , Diet, High-Fat , Dietary Fats/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Extracellular Fluid/metabolism , Lymphatic Vessels/pathology , Male , Mice, Knockout , Monocytes/metabolism , Monocytes/pathology , Nerve Tissue Proteins/genetics
16.
Neuron ; 95(6): 1365-1380.e5, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28867552

ABSTRACT

Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions.


Subject(s)
Astrocytes/metabolism , Connexin 43/physiology , Sleep/physiology , Wakefulness/physiology , Animals , Connexin 43/genetics , Gap Junctions/physiology , Glucose/metabolism , Hypothalamic Area, Lateral/metabolism , Hypothalamic Area, Lateral/physiology , Lactic Acid/metabolism , Lactic Acid/pharmacology , Mice , Mice, Knockout , Neurons/metabolism , Neurons/physiology , Orexins/genetics , Orexins/physiology
18.
Sci Rep ; 6: 38266, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27910899

ABSTRACT

Drug studies in animal models have implicated pannexin1 (Panx1) in various types of pain, including trigeminal hypersensitivity, neuropathic pain and migraine. However, the tested drugs have limited specificity and efficacy so that direct evidence for Panx1 contribution to pain has been lacking. We here show that tactile hypersensitivity is markedly attenuated by deletion of Panx1 in a mouse model of chronic orofacial pain; in this model, trigeminal ganglion Panx1 expression and function are markedly enhanced. Targeted deletion of Panx1 in GFAP-positive glia or in neurons revealed distinct effects. Panx1 deletion in GFAP-positive glia cells prevented hypersensitivity completely, whereas deletion of neuronal Panx1 reduced baseline sensitivity and the duration of hypersensitivity. In trigeminal ganglia with genetically encoded Ca2+ indicator in GFAP-positive glia or in neurons, both cell populations were found to be hyperactive and hyper-responsive to ATP. These novel findings reveal unique roles for GFAP-positive glial and neuronal Panx1 and describe new chronic pain targets for cell-type specific intervention in this often intractable disease.


Subject(s)
Chronic Pain/metabolism , Connexins/biosynthesis , Gene Expression Regulation , Hyperesthesia/metabolism , Nerve Tissue Proteins/biosynthesis , Neuroglia/metabolism , Neurons/metabolism , Trigeminal Ganglion/metabolism , Animals , Chronic Pain/genetics , Chronic Pain/pathology , Connexins/genetics , Hyperesthesia/genetics , Hyperesthesia/pathology , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neuroglia/pathology , Neurons/pathology , Trigeminal Ganglion/pathology
19.
J Immunol ; 196(10): 4338-47, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27076682

ABSTRACT

Pannexin1 (Panx1) channels are large high conductance channels found in all vertebrates that can be activated under several physiological and pathological conditions. Our published data indicate that HIV infection results in the extended opening of Panx1 channels (5-60 min), allowing for the secretion of ATP through the channel pore with subsequent activation of purinergic receptors, which facilitates HIV entry and replication. In this article, we demonstrate that chemokines, which bind CCR5 and CXCR4, especially SDF-1α/CXCL12, result in a transient opening (peak at 5 min) of Panx1 channels found on CD4(+) T lymphocytes, which induces ATP secretion, focal adhesion kinase phosphorylation, cell polarization, and subsequent migration. Increased migration of immune cells is key for the pathogenesis of several inflammatory diseases including multiple sclerosis (MS). In this study, we show that genetic deletion of Panx1 reduces the number of the CD4(+) T lymphocytes migrating into the spinal cord of mice subjected to experimental autoimmune encephalomyelitis, an animal model of MS. Our results indicate that opening of Panx1 channels in response to chemokines is required for CD4(+) T lymphocyte migration, and we propose that targeting Panx1 channels could provide new potential therapeutic approaches to decrease the devastating effects of MS and other inflammatory diseases.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Movement/drug effects , Chemokine CXCL12/immunology , Connexins/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/immunology , Nerve Tissue Proteins/immunology , Adenosine Triphosphate/metabolism , Animals , CD4-Positive T-Lymphocytes/cytology , Cells, Cultured , Connexins/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Gene Deletion , Humans , Inflammation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Spinal Cord
20.
Glia ; 64(1): 139-54, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26413835

ABSTRACT

Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes.


Subject(s)
Astrocytes/cytology , Astrocytes/metabolism , Calcium Signaling/physiology , Animals , Aquaporin 1/genetics , Aquaporin 1/metabolism , Aquaporin 4/genetics , Aquaporin 4/metabolism , Astrocytes/drug effects , Calcium/metabolism , Calcium Signaling/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Size/drug effects , Cells, Cultured , Extracellular Space/metabolism , Humans , Kinetics , Mice, Knockout , Rats , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...