Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Phys ; 10(1): 31, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221434

ABSTRACT

BACKGROUND: 18F-FDG PET/CT imaging allows to study oncological patients and their relative diagnosis through the standardised uptake value (SUV) evaluation. During radiopharmaceutical injection, an extravasation event may occur, making the SUV value less accurate and possibly leading to severe tissue damage. The study aimed to propose a new technique to monitor and manage these events, to provide an early evaluation and correction to the estimated SUV value through a SUV correction coefficient. METHODS: A cohort of 70 patients undergoing 18F- FDG PET/CT examinations was enrolled. Two portable detectors were secured on the patients' arms. The dose-rate (DR) time curves on the injected DRin and contralateral DRcon arm were acquired during the first 10 min of injection. Such data were processed to calculate the parameters ΔpinNOR = (DRinmax- DRinmean)/DRinmax and ΔRt = (DRin(t) - DRcon(t)), where DRinmax is the maximum DR value, DRinmean is the average DR value in the injected arm. OLINDA software allowed dosimetric estimation of the dose in the extravasation region. The estimated residual activity in the extravasation site allowed the evaluation of the SUV's correction value and to define an SUV correction coefficient. RESULTS: Four cases of extravasations were identified for which ΔRt [(390 ± 26) µSv/h], while ΔRt [(150 ± 22) µSv/h] for abnormal and ΔRt [(24 ± 11) µSv/h] for normal cases. The ΔpinNOR showed an average value of (0.44 ± 0.05) for extravasation cases and an average value of (0.91 ± 0.06) and (0.77 ± 0.23) in normal and abnormal classes, respectively. The percentage of SUV reduction (SUV%CR) ranges between 0.3% and 6%. The calculated self-tissue dose values range from 0.027 to 0.573 Gy, according to the segmentation modality. A similar correlation between the inverse of ΔpinNOR and the normalised ΔRt with the SUV correction coefficient was found. CONCLUSIONS: The proposed metrics allowed to characterised the extravasation events in the first few minutes after the injection, providing an early SUV correction when necessary. We also assume that the characterisation of the DR-time curve of the injection arm is sufficient for the detection of extravasation events. Further validation of these hypotheses and key metrics is recommended in larger cohorts.

2.
Eur J Radiol ; 163: 110812, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37068414

ABSTRACT

PURPOSE: To evaluated the accuracy of spectral parameters quantification of four different CT scanners in dual energy examinations of the lung using a dedicated phantom. METHOD: Measurements were made with different technologies of the same vendor: one dual source CT scanner (DSCT), one TwinBeam (i.e. split filter) and two sequential acquisition single source scanners (SSCT). Angular separation of Calcium and Iodine signals were calculated from scatter plots of low-kVp versus high-kVp HUs. Electron density (ρe), effective atomic number (Zeff) and Iodine concentration (Iconc) were measured using Syngo.via software. Accuracy (A) of ρe, Zeff and Iconc was evaluated as the absolute percentage difference (D%) between reference values and measured ones, while precision (P) was evaluated as the variability σ obtained by repeating the measurement with different acquisition/reconstruction settings. RESULTS: Angular separation was significantly larger for DSCT (α = 9.7°) and for sequential SSCT (α = 9.9°) systems. TwinBeam was less performing in material separation (α = 5.0°). The lowest average A was observed for TwinBeam (Aρe = [4.7 ± 1.0], AZ = [9.1 ± 3.1], AIconc = [19.4 ± 4.4]), while the best average A was obtained for Flash (Aρe = [1.8 ± 0.4], AZ = [3.5 ± 0.7], AIconc = [7.3 ± 1.8]). TwinBeam presented inferior average P (Pρe = [0.6 ± 0.1], PZ = [1.1 ± 0.2], PIconc = [10.9 ± 4.9]), while other technologies demonstrate a comparable average. CONCLUSIONS: Different technologies performed material separation and spectral parameter quantification with different degrees of accuracy and precision. DSCT performed better while TwinBeam demonstrated not excellent performance. Iodine concentration measurements exhibited high variability due to low Iodine absolute content in lung nodules, thus limiting its clinical usefulness in pulmonary applications.


Subject(s)
Iodine , Tomography, X-Ray Computed , Humans , Tomography Scanners, X-Ray Computed , Lung/diagnostic imaging , Software , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...