Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 6(4): 520-7, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10786843

ABSTRACT

We report the evolution of an RNA aptamer to change its binding specificity. RNA aptamers that bind the free amino acid tyrosine were in vitro selected from a degenerate pool derived from a previously selected dopamine aptamer. Three independent sequences bind tyrosine in solution, the winner of the selection binding with a dissociation constant of 35 microM. Competitive affinity chromatography with tyrosine-related ligands indicated that the selected aptamers are highly L-stereo selective and also recognize L-tryptophan and L-dopa with similar affinity. The binding site was localized by sequence comparison, analysis of minimal boundaries, and structural probing upon ligand binding. Tyrosine-binding sites are characterized by the presence of both tyrosine (UAU and UAC) and termination (UAG and UAA) triplets.


Subject(s)
Dopamine/metabolism , Oligoribonucleotides/metabolism , RNA/metabolism , Tyrosine/metabolism , Base Sequence , Binding Sites , Chromatography, Affinity , Cloning, Molecular , Directed Molecular Evolution , Dopamine/chemistry , Ligands , Molecular Probe Techniques , Nucleic Acid Conformation , Oligoribonucleotides/chemistry , Oligoribonucleotides/genetics , Phenylalanine/genetics , Phenylalanine/metabolism , RNA/chemistry , RNA/genetics , Substrate Specificity , Thermodynamics , Tryptophan/genetics , Tryptophan/metabolism , Tyrosine/genetics
2.
J Biol Chem ; 272(27): 16862-7, 1997 Jul 04.
Article in English | MEDLINE | ID: mdl-9201993

ABSTRACT

The degradation of glucosylceramide in lysosomes is accomplished by glucosylceramidase with the assistance of, at least, another protein, saposin C (Sap C), which is generated from a large precursor together with three other similar proteins, saposins A, B, and D. In the present study, we have examined the effects of saposins on the enzymatic hydrolysis of glucosylceramide inserted in large and small phospholipid liposomes. The glucosylceramide contained in large unilamellar vesicles (LUV) was degraded by glucosylceramidase at a rate 7-8-fold lower than glucosylceramide inserted in small unilamellar vesicles (SUV). The separate addition of either Sap A or Sap C to the LUV system partially stimulated the sphingolipid degradation while saposins B and D had no effect. In the presence of both Sap A and Sap C, the rate of sphingolipid degradation was higher than the sum of the rates with the two saposins individually, indicating synergism in their actions. The stimulatory effect of the two saposins depended on the incorporation of an acidic phospholipid such as phosphatidylserine (PS) into LUV. The characteristics of glucosylceramidase activation by Sap C were different from those of Sap A. Sap C increased the rate of hydrolysis of both the artificial water soluble substrate, 4-methylumbelliferyl-beta-D-glucopyranoside, and the lipid substrate, glucosylceramide, while Sap A only stimulated degradation of the sphingolipid. Also the binding properties of Saps A and C were markedly different. At acidic pH values, Sap C bound to PS-containing LUV and promoted the association of glucosylceramidase with the membrane. In contrast, Sap A had poor affinity for the membrane even in the presence of glucosylceramide; moreover, Sap A did not potentiate the capacity of Sap C to mediate glucosylceramidase binding. In conclusion, our results show that both Sap A and Sap C are required for maximal hydrolysis of glucosylceramide inserted in PS-containing LUV, that their effects are synergistic, and that their mode of action is different. Sap C is responsible for the membrane binding of glucosylceramidase, while Sap A stimulation is possibly related to its effect on the conformation of the enzyme. It can be envisaged that Sap A in conjunction with Sap C might have a physiological role in glucosylceramide degradation.


Subject(s)
Glucosylceramides/metabolism , Glycoproteins/pharmacology , beta-Glucosidase/metabolism , Catalysis , Enzyme Activation , Humans , Hydrogen-Ion Concentration , Hydrolysis , Liposomes/metabolism , Particle Size , Saposins
3.
J Biol Chem ; 270(51): 30576-80, 1995 Dec 22.
Article in English | MEDLINE | ID: mdl-8530492

ABSTRACT

Saposins A, B, C, and D are small lysosomal glycoproteins released by proteolysis from a single precursor polypeptide, prosaposin. We have presently investigated the conformational states of saposins and their interaction with membranes at acidic pH values similar to those present in lysosomes. With the use of phase partitioning in Triton X-114, experimental evidence was provided that, upon acidification, saposins (Sap) A, C, and D acquire hydrophobic properties, while the hydrophilicity of Sap B is apparently unchanged. The pH-dependent exposure of hydrophobic domains of Sap C and D paralleled their pH-dependent binding to large unilamellar vesicles composed of phosphatidylcholine, phosphatidylserine, and cholesterol. In contrast, the binding of Sap A to the vesicles was very restricted, in spite of its increased hydrophobicity at low pH. A low affinity for the vesicles was also shown by Sap B, a finding consistent with its apparent hydrophilicity both at neutral and acidic pH. At the acidic pH values needed for binding, Sap C and D powerfully destabilized the phospholipid membranes, while Sap A and B minimally affected the bilayer integrity. In the absence of the acidic phospholipid phosphatidylserine, the induced destabilization markedly decreased. Of the four saposins, only Sap C was able to promote the binding of glucosylceramidase to phosphatidylserine-containing membranes. This result is consistent with the notion that Sap C is specifically required by glucosylceramidase to exert its activity. Our finding that an acidic environment induces an increased hydrophobicity in Sap A, C, and D, making the last two saposins able to interact and perturb phospholipid membranes, suggests that this mechanism might be relevant to the mode of action of saposins in lysosomes.


Subject(s)
Glucosylceramidase/metabolism , Glycoproteins/chemistry , Glycoproteins/metabolism , Liposomes , Phosphatidylcholines , Protein Conformation , Detergents , Electrophoresis, Polyacrylamide Gel , Gaucher Disease/metabolism , Glycoproteins/isolation & purification , Humans , Hydrogen-Ion Concentration , Kinetics , Lysosomes/metabolism , Lysosomes/ultrastructure , Octoxynol , Polyethylene Glycols , Saposins , Sphingolipid Activator Proteins , Spleen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...