Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 555, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992696

ABSTRACT

Graphene, the first true two-dimensional material, still reveals the most remarkable transport properties among the growing class of two-dimensional materials. Although many studies have investigated fundamental scattering processes, the surprisingly large variation in the experimentally determined resistances is still an open issue. Here, we quantitatively investigate local transport properties of graphene prepared by polymer assisted sublimation growth using scanning tunneling potentiometry. These samples exhibit a spatially homogeneous current density, which allows to analyze variations in the local electrochemical potential with high precision. We utilize this possibility by examining the local sheet resistance finding a significant variation of up to 270% at low temperatures. We identify a correlation of the sheet resistance with the stacking sequence of the 6H silicon carbide substrate and with the distance between the graphene and the substrate. Our results experimentally quantify the impact of the graphene-substrate interaction on the local transport properties of graphene.

2.
Sci Adv ; 4(5): eaar5170, 2018 05.
Article in English | MEDLINE | ID: mdl-29806026

ABSTRACT

The shape and density of grain boundary defects in graphene strongly influence its electrical, mechanical, and chemical properties. However, it is difficult and elaborate to gain information about the large-area distribution of grain boundary defects in graphene. An approach is presented that allows fast visualization of the large-area distribution of grain boundary-based line defects in chemical vapor deposition graphene after transferring graphene from the original copper substrate to a silicon dioxide surface. The approach is based on exposing graphene to vapor hydrofluoric acid (VHF), causing partial etching of the silicon dioxide underneath the graphene as VHF diffuses through graphene defects. The defects can then be identified using optical microscopy, scanning electron microscopy, or Raman spectroscopy. The methodology enables simple evaluation of the grain sizes in polycrystalline graphene and can therefore be a valuable procedure for optimizing graphene synthesis processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...