Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732075

ABSTRACT

Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.


Subject(s)
Melanoma , Melatonin , Sericins , Wound Healing , Melatonin/therapeutic use , Melatonin/pharmacology , Humans , Wound Healing/drug effects , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Animals , Sericins/pharmacology , Sericins/therapeutic use , Antioxidants/therapeutic use , Antioxidants/pharmacology , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
2.
ALTEX ; 41(1): 142-148, 2024.
Article in English | MEDLINE | ID: mdl-38207287

ABSTRACT

Many laboratory procedures generate data on properties of chemicals, but they cannot be equated with toxicological "test methods". This apparent discrepancy is not limited to in vitro testing, using animal-free new approach methods (NAM), but also applies to animal-based testing approaches. Here, we give a brief overview of the differences between data generation and the setup or use of a complete test method. While there is excellent literature available on this topic for specialists (GIVIMP guidance; ToxTemp overview), a brief overview and easily-accessible entry point may be useful for a broader community. We provide a single figure to summarize all test method elements and processes required in the development (setup and adaptation) of a test method. The exposure scheme, the endpoint, and the test system are briefly outlined as fundamental elements of any test method. A rationale is provided, why they are not sufficient. We then explain the importance and role of purpose definition (including some information on what is modelled) and the prediction model, aka data interpretation procedure, which depends on the purpose definition, as further essential elements. This connection exemplifies that all fundamental elements are interdependent, and none can be omitted. Finally, discussion is provided on validation as a measure to provide confidence in the reliability, performance, and relevance of a test method. In this sense, validation may be considered a sixth fundamental element for practical use of test methods.


Many laboratory procedures generate data on chemicals, but they cannot be considered complete toxicological "test methods". Here, we give a brief explanation of the fundamental elements of a toxicological test method. We provide an illustration that gives a complete overview of the devel­opment of a test method for non-specialists. We introduce the six fundamental elements, i.e., the exposure scheme, the test endpoint, the test system, the purpose definition and the prediction model and describe how they work together. Finally, we discuss the concept of validation. An understanding of these concepts is important for good-quality scientific research and especially for the development and acceptance of alternatives to animal experiments.


Subject(s)
Biological Science Disciplines , Research Design , Animals , Humans , Reproducibility of Results
3.
Mol Cell ; 83(6): 911-926, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931258

ABSTRACT

Mitochondria are essential for cellular functions such as metabolism and apoptosis. They dynamically adapt to the changing environmental demands by adjusting their protein, nucleic acid, metabolite, and lipid contents. In addition, the mitochondrial components are modulated on different levels in response to changes, including abundance, activity, and interaction. A wide range of omics-based approaches has been developed to be able to explore mitochondrial adaptation and how mitochondrial function is compromised in disease contexts. Here, we provide an overview of the omics methods that allow us to systematically investigate the different aspects of mitochondrial biology. In addition, we show examples of how these methods have provided new biological insights. The emerging use of these toolboxes provides a more comprehensive understanding of the processes underlying mitochondrial function.


Subject(s)
Acclimatization , Mitochondria , Mitochondria/genetics , Mitochondria/metabolism , Biology
4.
Mol Pharm ; 20(1): 241-254, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36538353

ABSTRACT

Effective therapy of wounds is difficult, especially for chronic, non-healing wounds, and novel therapeutics are urgently needed. This challenge can be addressed with bioactive wound dressings providing a microenvironment and facilitating cell proliferation and migration, ideally incorporating actives, which initiate and/or progress effective healing upon release. In this context, electrospun scaffolds loaded with growth factors emerged as promising wound dressings due to their biocompatibility, similarity to the extracellular matrix, and potential for controlled drug release. In this study, electrospun core-shell fibers were designed composed of a combination of polycaprolactone and polyethylene oxide. Insulin, a proteohormone with growth factor characteristics, was successfully incorporated into the core and was released in a controlled manner. The fibers exhibited favorable mechanical properties and a surface guiding cell migration for wound closure in combination with a high uptake capacity for wound exudate. Biocompatibility and significant wound healing effects were shown in interaction studies with human skin cells. As a new approach, analysis of the wound proteome in treated ex vivo human skin wounds clearly demonstrated a remarkable increase in wound healing biomarkers. Based on these findings, insulin-loaded electrospun wound dressings bear a high potential as effective wound healing therapeutics overcoming current challenges in the clinics.


Subject(s)
Insulin , Nanofibers , Humans , Wound Healing , Drug Delivery Systems , Skin , Bandages
5.
Mol Cell ; 82(2): 435-446.e7, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34847359

ABSTRACT

Most mitochondrial proteins are translated in the cytosol and imported into mitochondria. Mutations in the mitochondrial protein import machinery cause human pathologies. However, a lack of suitable tools to measure protein uptake across the mitochondrial proteome has prevented the identification of specific proteins affected by import perturbation. Here, we introduce mePRODmt, a pulsed-SILAC based proteomics approach that includes a booster signal to increase the sensitivity for mitochondrial proteins selectively, enabling global dynamic analysis of endogenous mitochondrial protein uptake in cells. We applied mePRODmt to determine protein uptake kinetics and examined how inhibitors of mitochondrial import machineries affect protein uptake. Monitoring changes in translation and uptake upon mitochondrial membrane depolarization revealed that protein uptake was extensively modulated by the import and translation machineries via activation of the integrated stress response. Strikingly, uptake changes were not uniform, with subsets of proteins being unaffected or decreased due to changes in translation or import capacity.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Biosynthesis , Proteome , Proteomics , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Electron Transport Complex I/metabolism , Female , HeLa Cells , Humans , Kinetics , Mitochondria/drug effects , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/metabolism , Protein Biosynthesis/drug effects , Protein Transport , Uncoupling Agents/pharmacology
6.
Bio Protoc ; 12(24)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36618095

ABSTRACT

Mitochondria are cellular organelles essential for the function and survival of eukaryotic cells. Nearly all mitochondrial proteins are nuclear-encoded and require mitochondrial import upon their synthesis in the cytosol. Various approaches have been described to study mitochondrial protein import, such as monitoring the entry of radiolabeled proteins into purified mitochondria or quantifying newly synthesized proteins within mitochondria by proteomics. Here, we provide a detailed protocol for a commonly used and straightforward assay that quantitatively examines mitochondrial protein import by monitoring the co-localization of mitochondrially targeted enhanced green fluorescent protein (eGFP) with the mitochondrial fluorescence dye MitoTracker TM Deep Red FM by live cell imaging. We describe the preparation and use of a stable mammalian cell line inducibly expressing a mitochondrial targeting sequence (MTS)-eGFP, followed by quantitative image analysis using an open-source ImageJ-based plugin. This inducible expression system avoids the need for transient transfection while enabling titration of MTS-eGFP expression and thereby avoiding protein folding stress. Overall, the assay provides a simple and robust approach to assess mitochondrial import capacity of cells in various disease-related settings. This protocol was validated in: Mol Cell (2021), DOI: 10.1016/j.molcel.2021.11.004 Graphical abstract.

7.
Autophagy ; 16(4): 763-764, 2020 04.
Article in English | MEDLINE | ID: mdl-31958035

ABSTRACT

Changing conditions necessitate cellular adaptation, which frequently entails adjustment of organelle size and shape. The endoplasmic reticulum (ER) is an organelle of exceptional morphological plasticity. In budding yeast, ER stress triggers the de novo formation of ER subdomains called ER whorls. These whorls are selectively degraded by a poorly defined type of microautophagy. We recently showed that ESCRT proteins are essential for microautophagic uptake of ER whorls into lysosomes, likely by mediating the final scission of the lysosomal membrane. Furthermore, ER-selective microautophagy acts in parallel with ER-selective macroautophagy. The molecular machineries for these two types of autophagy are distinct and their contributions to ER turnover vary according to conditions, suggesting that they serve different functions. Our study provides evidence for a direct role of ESCRTs in microautophagy and extends our understanding of how autophagy promotes organelle homeostasis.


Subject(s)
Autophagy/physiology , Endoplasmic Reticulum/metabolism , Lysosomes/metabolism , Microautophagy/physiology , Endoplasmic Reticulum Stress/physiology , Homeostasis/physiology , Humans , Intracellular Membranes
8.
EMBO J ; 39(2): e102586, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31802527

ABSTRACT

ER-phagy, the selective autophagy of endoplasmic reticulum (ER), safeguards organelle homeostasis by eliminating misfolded proteins and regulating ER size. ER-phagy can occur by macroautophagic and microautophagic mechanisms. While dedicated machinery for macro-ER-phagy has been discovered, the molecules and mechanisms mediating micro-ER-phagy remain unknown. Here, we first show that micro-ER-phagy in yeast involves the conversion of stacked cisternal ER into multilamellar ER whorls during microautophagic uptake into lysosomes. Second, we identify the conserved Nem1-Spo7 phosphatase complex and the ESCRT machinery as key components for micro-ER-phagy. Third, we demonstrate that macro- and micro-ER-phagy are parallel pathways with distinct molecular requirements. Finally, we provide evidence that the ESCRT machinery directly functions in scission of the lysosomal membrane to complete the microautophagic uptake of ER. These findings establish a framework for a mechanistic understanding of micro-ER-phagy and, thus, a comprehensive appreciation of the role of autophagy in ER homeostasis.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum/physiology , Endosomal Sorting Complexes Required for Transport , Intracellular Membranes/metabolism , Microautophagy , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/growth & development , Homeostasis , Membrane Proteins/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...