Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 245
Filter
1.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727269

ABSTRACT

The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.


Subject(s)
Brain Injuries, Traumatic , Inflammation , Lysophosphatidylcholines , Mice, Inbred C57BL , Neurons , Valproic Acid , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/complications , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Mice , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Inflammation/pathology , Inflammation/drug therapy , Lysophosphatidylcholines/blood , Cell Death/drug effects , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Repressor Proteins/metabolism , Repressor Proteins/genetics
2.
BMC Neurosci ; 25(1): 10, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424488

ABSTRACT

TBI is a leading cause of death and disability in young people and older adults worldwide. There is no gold standard treatment for TBI besides surgical interventions and symptomatic relief. Post-injury infections, such as lower respiratory tract and surgical site infections or meningitis are frequent complications following TBI. Whether the use of preventive and/or symptomatic antibiotic therapy improves patient mortality and outcome is an ongoing matter of debate. In contrast, results from animal models of TBI suggest translational perspectives and support the hypothesis that antibiotics, independent of their anti-microbial activity, alleviate secondary injury and improve neurological outcomes. These beneficial effects were largely attributed to the inhibition of neuroinflammation and neuronal cell death. In this review, we briefly outline current treatment options, including antibiotic therapy, for patients with TBI. We then summarize the therapeutic effects of the most commonly tested antibiotics in TBI animal models, highlight studies identifying molecular targets of antibiotics, and discuss similarities and differences in their mechanistic modes of action.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Neuroprotective Agents , Animals , Humans , Aged , Adolescent , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Disease Models, Animal , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/complications , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
3.
Pharmacol Ther ; 253: 108565, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38052308

ABSTRACT

Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.


Subject(s)
Glioblastoma , Microglia , Humans , Aminopyridines/pharmacology , Pyrroles/metabolism , Pyrroles/pharmacology , Tumor Microenvironment
5.
Sci Data ; 10(1): 780, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938587

ABSTRACT

DOES - Dataset of European scrap classes. Today, scrap is already an important raw material for industry. Due to the transformation to green steel, the secondary raw material scrap will become increasingly important in the coming years. With DOES a free dataset is presented, which represents common non-alloyed European scrap classes. Two important points were considered in this dataset. First, scrap oxidizes under normal external conditions and the visual appearance changes, which plays an important role in visual inspections. Therefore, DOES includes scrap images of different degrees of corrosion attack. Second, images of scrap metal (mostly scrap piles) usually have no intrinsic order. For this reason, a technique to extract many overlapping rectangles from raw images was used, which can be used to train deep learning algorithms without any disadvantage. This dataset is very suitable to develop industrial applications or to research classification algorithms. The dataset was validated by experts and through machine learning models.

6.
Free Radic Biol Med ; 208: 643-656, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37722569

ABSTRACT

Synaptic signaling depends on ATP generated by mitochondria. Dysfunctional mitochondria shift the redox balance towards a more oxidative environment. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction. We found that neuronal calcium-binding protein 2 (NECAB2) plays a role in striatal function and mitochondrial homeostasis. NECAB2 is a predominantly endosomal striatal protein which partially colocalizes with mitochondria. This colocalization is enhanced by mild oxidative stress. Global knockout of Necab2 in the mouse results in increased superoxide levels, increased DNA oxidation and reduced levels of the antioxidant glutathione which correlates with an altered mitochondrial shape and function. Striatal mitochondria from Necab2 knockout mice are more abundant and smaller and characterized by a reduced spare capacity suggestive of intrinsic uncoupling respectively mitochondrial dysfunction. In line with this, we also found an altered stress-induced interaction of endosomes with mitochondria in Necab2 knockout striatal cultures. The predominance of dysfunctional mitochondria and the pro-oxidative redox milieu correlates with a loss of striatal synapses and behavioral changes characteristic of striatal dysfunction like reduced motivation and altered sensory gating. Together this suggests an involvement of NECAB2 in an endosomal pathway of mitochondrial stress response important for striatal function.


Subject(s)
Antioxidants , Corpus Striatum , Oxidative Stress , Animals , Mice , Antioxidants/metabolism , Calcium-Binding Proteins/metabolism , Eye Proteins/metabolism , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Neurons/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Corpus Striatum/physiology
7.
Methods Appl Fluoresc ; 11(4)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612784

ABSTRACT

Antibodies have gained considerable importance in laboratory and clinical settings. Currently, antibodies are extensively employed for the diagnosis and treatment of several human diseases. Herein, using targeted and cell immunisation approaches, we developed and characterised an antibody clone, DWH24. We found that DWH24 is an IgMκtype antibody that enables excellent visualisation and quantification of dead cells using immunofluorescence, fluorescence microscopy, and flow cytometry. This property was proved by the spontaneous cell death of several tumour cell lines and stimulated T cells, as well as after chemo- and photodynamic therapy. Unlike conventional apoptosis and cell death markers, DWH24 binding occurred in a Ca2+- and protein-independent manner and enabled live imaging of cell death progress, as shown using time-lapse microscopy. The binding specificity of DWH24 was analysed using a human proteome microarray, which revealed a complex response profile with very high spot intensities against various proteins, such as tropomyosin variants and FAM131C. Accordingly, DWH24 can be employed as a suitable tool for the cost-effective and universal analysis of cell death using fluorescence imaging and flow cytometry.


Subject(s)
Apoptosis , Humans , Cell Death , Microscopy, Fluorescence , Cell Line, Tumor , Flow Cytometry
8.
Cells ; 12(13)2023 07 05.
Article in English | MEDLINE | ID: mdl-37443819

ABSTRACT

The activation of the mineralocorticoid (MR) and glucocorticoid (GR) receptors on peripheral sensory neurons seems to modify pain perception through both direct non-genomic and indirect genomic pathways. These distinct subpopulations of sensory neurons are not known for peripheral human nerves. Therefore, we examined MR and GR on subpopulations of sensory neurons in sectioned human and rat peripheral nerves. Real-time PCR (RT-PCR) and double immunofluorescence confocal analysis of MR and GR with the neuronal markers PGP9.5, neurofilament 200 (NF200), and the potential pain signaling molecules CGRP, Nav1.8, and TRPV1 were performed in human and rat nerve tissue. We evaluated mechanical hyperalgesia after intrathecal administration of GR and MR agonists. We isolated MR- and GR-specific mRNA from human peripheral nerves using RT-PCR. Our double immunofluorescence analysis showed that the majority of GR colocalized with NF200 positive, myelinated, mechanoreceptive A-fibers and, to a lesser extent, with peripheral peptidergic CGRP-immunoreactive sensory nerve fibers in humans and rats. However, the majority of MR colocalized with CGRP in rat as well as human nerve tissue. Importantly, there was an abundant colocalization of MR with the pain signaling molecules TRPV1, CGRP, and Nav1.8 in human as well as rat nerve tissue. The intrathecal application of the GR agonist reduced, and intrathecal administration of an MR agonist increased, mechanical hyperalgesia in rats. Altogether, these findings support a translational approach in mammals that aims to explain the modulation of sensory information through MR and GR activation. Our findings show a significant overlap between humans and rats in MR and GR expression in peripheral sensory neurons.


Subject(s)
Hyperalgesia , Mineralocorticoids , Humans , Rats , Animals , Mineralocorticoids/metabolism , Hyperalgesia/metabolism , Receptors, Glucocorticoid/metabolism , Calcitonin Gene-Related Peptide/metabolism , Leg , Pain/metabolism , Sensory Receptor Cells/metabolism , Biology , Mammals/metabolism
9.
Neuropharmacology ; 237: 109648, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37385435

ABSTRACT

The connection between dysbiosis of the gut microbiome and diseases and injuries of the brain has attracted considerable interest in recent years. Interestingly, antibiotic-induced microbial dysbiosis has been implicated in the pathogenesis of traumatic brain injury (TBI), while early administration of antibiotics associates with improved survival in TBI patients. In animal models of TBI, short- or long-term administration of antibiotics, both peri- or post-operatively, were shown to induce gut microbiome dysbiosis but also anti-inflammatory and neuroprotective effects. However, the acute consequences of microbial dysbiosis on TBI pathogenesis after discontinuation of antibiotic treatment are elusive. In this study, we tested whether pre-traumatic antibiotic-induced microbial depletion by vancomycin, amoxicillin, and clavulanic acid affects pathogenesis during the acute phase of TBI in adult male C57BL/6 mice. Pre-traumatic microbiome depletion did not affect neurological deficits over 72 h post injury (hpi) and brain histopathology, including numbers of activated astrocytes and microglia, at 72 hpi. However, astrocytes and microglia were smaller after pre-traumatic microbiome depletion compared to vehicle treatment at 72 hpi, indicating less inflammatory activation. Accordingly, TBI-induced gene expression of the inflammation markers Interleukin-1ß, complement component C3, translocator protein TSPO and the major histocompatibility complex MHC2 was attenuated in microbiome-depleted mice along with reduced Immunoglobulin G extravasation as a proxy of blood-brain barrier (BBB) impairment. These results suggest that the gut microbiome contributes to early neuroinflammatory responses to TBI but does not have a significant impact on brain histopathology and neurological deficits. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Animals , Mice , Male , Neuroinflammatory Diseases , Anti-Bacterial Agents/pharmacology , Dysbiosis , Mice, Inbred C57BL , Brain Injuries/metabolism , Brain Injuries, Traumatic/metabolism , Inflammation/metabolism , Disease Models, Animal , Microglia
10.
Sci Rep ; 13(1): 7413, 2023 05 07.
Article in English | MEDLINE | ID: mdl-37150755

ABSTRACT

After traumatic brain injury (TBI) cerebral inflammation with invasion of neutrophils and lymphocytes is a crucial factor in the process of secondary brain damage. In TBI the intrinsic renin-angiotensin system is an important mediator of cerebral inflammation, as inhibition of the angiotensin II receptor type 1 (AT1) reduces secondary brain damage and the invasion of neutrophil granulocytes into injured cerebral tissue. The current study explored the involvement of immune cells in neuroprotection mediated by AT1 inhibition following experimental TBI. Four different cohorts of male mice were examined, investigating the effects of neutropenia (anti-Ly6G antibody mediated neutrophil depletion; C57BL/6), lymphopenia (RAG1 deficiency, RAG1-/-), and their combination with candesartan-mediated AT1 inhibition. The present results showed that reduction of neutrophils and lymphocytes, as well as AT1 inhibition in wild type and RAG1-/- mice, reduced brain damage and neuroinflammation after TBI. However, in neutropenic mice, candesartan did not have an effect. Interestingly, AT1 inhibition was found to be neuroprotective in RAG1-/- mice but not in neutropenic mice. The findings suggest that AT1 inhibition may exert neuroprotection by reducing the inflammation caused by neutrophils, ultimately leading to a decrease in their invasion into cerebral tissue.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Mice , Male , Animals , Neutrophils , Neuroprotection , Mice, Inbred C57BL , Brain Injuries, Traumatic/drug therapy , Brain Injuries/drug therapy , Inflammation/drug therapy , Homeodomain Proteins/pharmacology , Brain
11.
Redox Biol ; 62: 102700, 2023 06.
Article in English | MEDLINE | ID: mdl-37084690

ABSTRACT

Bone cancer pain (BCP) impairs patients' quality of life. However, the underlying mechanisms are still unclear. This study investigated the role of spinal interneuron death using a pharmacological inhibitor of ferroptosis in a mouse model of BCP. Lewis lung carcinoma cells were inoculated into the femur, resulting in hyperalgesia and spontaneous pain. Biochemical analysis revealed that spinal levels of reactive oxygen species and malondialdehyde were increased, while those of superoxide dismutase were decreased. Histological analysis showed the loss of spinal GAD65+ interneurons and provided ultrastructural evidence of mitochondrial shrinkage. Pharmacologic inhibition of ferroptosis using ferrostatin-1 (FER-1, 10 mg/kg, intraperitoneal for 20 consecutive days) attenuated ferroptosis-associated iron accumulation and lipid peroxidation and alleviated BCP. Furthermore, FER-1 inhibited the pain-associated activation of ERK1/2 and COX-2 expression and prevented the loss of GABAergic interneurons. Moreover, FER-1 improved analgesia by the COX-2 inhibitor Parecoxib. Taken together, this study shows that pharmacological inhibition of ferroptosis-like cell death of spinal interneurons alleviates BCP in mice. The results suggest that ferroptosis is a potential therapeutic target in patients suffering on BCP and possibly other types of pain.


Subject(s)
Bone Neoplasms , Cancer Pain , Ferroptosis , Mice , Animals , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Cancer Pain/drug therapy , Cancer Pain/etiology , Quality of Life , Pain , Bone Neoplasms/complications , Bone Neoplasms/drug therapy , Cell Death
13.
Sci Rep ; 13(1): 4348, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36928073

ABSTRACT

Traumatic brain injury (TBI) causes the release of danger-associated molecular patterns (DAMP) from damaged or dead cells, which contribute to secondary brain damage after TBI. Cell-free DNA (cfDNA) is a DAMP known to cause disruption of the blood-brain barrier (BBB), promote procoagulant processes, brain edema, and neuroinflammation. This study tested the hypothesis that administration of deoxyribonuclease-I (DNase-I) has a beneficial effect after TBI. Mice (n = 84) were subjected to controlled cortical impact (CCI) and posttraumatic intraperitoneal injections of low dose (LD) or high dose (HD) of DNase-I or vehicle solution at 30 min and 12 h after CCI. LD was most effective to reduce lesion volume (p = 0.003), brain water content (p < 0.0001) and to stabilize BBB integrity (p = 0.019) 1 day post-injury (dpi). At 6 h post injury LD-treated animals showed less cleavage of fibrin (p = 0.0014), and enhanced perfusion as assessed by micro-computer-tomography (p = 0.027). At 5 dpi the number of Iba1-positive cells (p = 0.037) were reduced, but the number of CD45-positive cells, motoric function and brain lesion volume was not different. Posttraumatic-treatment with DNase-I therefore stabilizes the BBB, reduces the formation of brain edema, immune response, and delays secondary brain damage. DNase-I might be a new approach to extend the treatment window after TBI.


Subject(s)
Brain Edema , Brain Injuries, Traumatic , Deoxyribonucleases , Animals , Mice , Blood-Brain Barrier , Brain/pathology , Brain Edema/drug therapy , Brain Edema/pathology , Brain Injuries/drug therapy , Brain Injuries/pathology , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Deoxyribonucleases/pharmacology , Deoxyribonucleases/therapeutic use , Disease Models, Animal , Mice, Inbred C57BL , Cell-Free Nucleic Acids/adverse effects , Cell-Free Nucleic Acids/metabolism
14.
Front Neurol ; 14: 1069434, 2023.
Article in English | MEDLINE | ID: mdl-36937523

ABSTRACT

Background: Some patients with neuralgia of cranial nerves with otherwise therapy-refractory pain respond to invasive therapy with local anesthetics. Unfortunately, pain regularly relapses despite multimodal pain management. Transcranial direct current stimulation (tDCS) may prolong pain response due to neuro-modulatory effects. Methods: This controlled clinical pilot trial randomized patients to receive anodal, cathodal or sham-tDCS stimulation prior to local anesthetic infiltration. Pain attenuation, quality-of-life and side effects were assessed and compared with historic controls to estimate effects of tDCS stimulation setting. Results: Altogether, 17 patients were randomized into three groups with different stimulation protocols. Relative reduction of pain intensity in per protocol treated patients were median 73%, 50% and 69% in anodal, cathodal and sham group, respectively (p = 0.726). Compared with a historic control group, a lower rate of responders with 50% reduction of pain intensity indicates probable placebo effects (OR 3.41 stimulation vs. non-stimulation setting, NNT 3.63). 76.9% (n = 10) of tDCS patients reported mild side-effects. Of all initially included 17 patients, 23.5% (n = 4) withdrew their study participation with highest proportion in the cathodal group (n = 3). A sample size calculation for a confirmatory trial revealed 120 patients using conservative estimations. Discussion: This pilot trial does not support series of anodal tDCS as neuro-modulatory treatment to enhance pain alleviation of local anesthetic infiltration series. Notably, results may indicate placebo effects of tDCS settings. Feasibility of studies in this population was limited due to relevant drop-out rates. Anodal tDCS warrants further confirmation as neuro-modulatory pain treatment option.

16.
Angew Chem Int Ed Engl ; 62(1): e202214906, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36345795

ABSTRACT

A catalysis-based regioselective 1,4-fluorofunctionalization of trifluoromethyl substituted 1,3-dienes has been developed to access compact, highly functionalized products. The process allows E,Z-mixed dienes to be processed to a single E-alkene isomer, and leverages an inexpensive and operationally convenient I(I)/I(III) catalysis platform. The first example of catalytic 1,4-difluorination is disclosed and subsequently evolved to enable 1,4-hetero-difunctionalization, which allows δ-fluoro-alcohol and amine derivatives to be forged in a single operation. The protocol is compatible with a variety of nucleophiles including fluoride, nitriles, carboxylic acids, alcohols and even water thereby allowing highly functionalized products, with a stereocenter bearing both C(sp3 )-F and C(sp3 )-CF3 groups, to be generated rapidly. Scalability (up to 3 mmol), and facile post-reaction modifications are demonstrated to underscore the utility of the method in expanding organofluorine chemical space.


Subject(s)
Alkenes , Polyenes , Isomerism , Catalysis , Alcohols
17.
Brain Sci ; 12(12)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36552158

ABSTRACT

In GWAS studies, the neural adhesion molecule encoding the neuronal growth regulator 1 (NEGR1) gene has been consistently linked with both depression and obesity. Although the linkage between NEGR1 and depression is the strongest, evidence also suggests the involvement of NEGR1 in a wide spectrum of psychiatric conditions. Here we show the expression of NEGR1 both in tyrosine- and tryptophan hydroxylase-positive cells. Negr1-/- mice show a time-dependent increase in behavioral sensitization to amphetamine associated with increased dopamine release in both the dorsal and ventral striatum. Upregulation of transcripts encoding dopamine and serotonin transporters and higher levels of several monoamines and their metabolites was evident in distinct brain areas of Negr1-/- mice. Chronic (23 days) escitalopram-induced reduction of serotonin and dopamine turnover is enhanced in Negr1-/- mice, and escitalopram rescued reduced weight of hippocampi in Negr1-/- mice. The current study is the first to show alterations in the brain monoaminergic systems in Negr1-deficient mice, suggesting that monoaminergic neural circuits contribute to both depressive and obesity-related phenotypes linked to the human NEGR1 gene.

18.
Sci Data ; 9(1): 790, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581614

ABSTRACT

Two airborne field campaigns focusing on observations of Arctic mixed-phase clouds and boundary layer processes and their role with respect to Arctic amplification have been carried out in spring 2019 and late summer 2020 over the Fram Strait northwest of Svalbard. The latter campaign was closely connected to the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Comprehensive datasets of the cloudy Arctic atmosphere have been collected by operating remote sensing instruments, in-situ probes, instruments for the measurement of turbulent fluxes of energy and momentum, and dropsondes on board the AWI research aircraft Polar 5. In total, 24 flights with 111 flight hours have been performed over open ocean, the marginal sea ice zone, and sea ice. The datasets follow documented methods and quality assurance and are suited for studies on Arctic mixed-phase clouds and their transformation processes, for studies with a focus on Arctic boundary layer processes, and for satellite validation applications. All datasets are freely available via the world data center PANGAEA.

19.
Front Mol Neurosci ; 15: 828567, 2022.
Article in English | MEDLINE | ID: mdl-36245918

ABSTRACT

Traumatic brain injury (TBI) induces a series of epigenetic changes in brain tissue, among which histone modifications are associated with the deterioration of TBI. In this study, we explored the role of histone H3 modifications in a weight-drop model of TBI in rats. Screening for various histone modifications, immunoblot analyses revealed that the phosphorylation of histone H3 serine 10 (p-H3S10) was significantly upregulated after TBI in the brain tissue surrounding the injury site. A similar posttraumatic regulation was observed for phosphorylated extracellular signal-regulated kinase (p-ERK), which is known to phosphorylate H3S10. In support of the hypothesis that ERK-mediated phosphorylation of H3S10 contributes to TBI pathogenesis, double immunofluorescence staining of brain sections showed high levels and colocalization of p-H3S10 and p-ERK predominantly in neurons surrounding the injury site. To test the hypothesis that inhibition of ERK-H3S10 signaling ameliorates TBI pathogenesis, the mitogen-activated protein kinase-extracellular signal-regulated kinase kinase (MEK) 1/2 inhibitor U0126, which inhibits ERK phosphorylation, was administered into the right lateral ventricle of TBI male and female rats via intracerebroventricular cannulation for 7 days post trauma. U0126 administration indeed prevented H3S10 phosphorylation and improved motor function recovery and cognitive function compared to vehicle treatment. In agreement with our findings in the rat model of TBI, immunoblot and double immunofluorescence analyses of brain tissue specimens from patients with TBI demonstrated high levels and colocalization of p-H3S10 and p-ERK as compared to control specimens from non-injured individuals. In conclusion, our findings indicate that phosphorylation-dependent activation of ERK-H3S10 signaling participates in the pathogenesis of TBI and can be targeted by pharmacological approaches.

20.
Front Neuroanat ; 16: 902738, 2022.
Article in English | MEDLINE | ID: mdl-36213610

ABSTRACT

Background: Emerging evidences indicate that glucocorticoid receptors (GR) play a regulatory role in cardiac function, particularly with regard to the autonomic nervous system. Therefore, this study aimed to demonstrate the expression and the precise anatomical location of GR in relation to the parasympathetic and sympathetic innervations of the heart. Methods: The present study used tissue samples from rat heart atria to perform conventional reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, and double immunofluorescence confocal analysis of GR with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP) as well as the mineralocorticoid receptor (MR). Results: Double immunofluorescence labeling revealed that GRs were co-expressed with VAChT in parasympathetic principal neuronal somata and nerve terminals innervating atrium. Also, GR colocalized with the sympathetic neuronal marker TH in a cluster of small intensely fluorescent (SIF) cells, on intracardiac nerve terminals and in the atrial myocardium. GR immunoreactivity was scarcely identified on CGRP-immunoreactive sensory nerve terminals. Approximately 20% of GR immunoreactive neuronal somata co-localized with MR. Finally, conventional RT-PCR and Western blot confirmed the presence of GR and MR in rat heart atria. Conclusion: This study provides evidence for the existence of GR predominantly on cardiac parasympathetic neurons and TH-immunoreactive SIF cells suggesting a functional role of cardiac GR on cardiovascular function by modulation of the cardiac autonomic nervous system.

SELECTION OF CITATIONS
SEARCH DETAIL
...