Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 8172, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071204

ABSTRACT

Although patients with rheumatoid arthritis (RA) typically exhibit symmetrical joint involvement, some patients develop alternative disease patterns in response to treatment, suggesting that different molecular mechanism may underlie disease progression depending on joint location. Here, we identify joint-specific changes in RA synovium and synovial fibroblasts (SF) between knee and hand joints. We show that the long non-coding RNA HOTAIR, which is only expressed in knee SF, regulates more than 50% of this site-specific gene expression in SF. HOTAIR is downregulated after stimulation with pro-inflammatory cytokines and is expressed at lower levels in knee samples from patients with RA, compared with osteoarthritis. Knockdown of HOTAIR in knee SF increases PI-Akt signalling and IL-6 production, but reduces Wnt signalling. Silencing HOTAIR inhibits the migratory function of SF, decreases SF-mediated osteoclastogenesis, and increases the recruitment of B cells by SF. We propose that HOTAIR is an important epigenetic factor in joint-specific gene expression in RA.


Subject(s)
Arthritis, Rheumatoid , Osteoarthritis , RNA, Long Noncoding , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Fibroblasts/metabolism , Gene Expression , Osteoarthritis/genetics , Osteoarthritis/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Synovial Fluid/metabolism , Synovial Membrane/metabolism
2.
J Microsc ; 284(2): 118-131, 2021 11.
Article in English | MEDLINE | ID: mdl-34231217

ABSTRACT

Microscopic organisms that penetrate calcareous structures by actively dissolving the carbonate matrix, namely microendoliths, have an important influence on the breakdown of marine carbonates. The study of these microorganisms and the bioerosion traces they produce is crucial for understanding the impact of their bioeroding activity on the carbonate recycling in environments under global climate change. Traditionally, either the extracted microendoliths were studied by conventional microscopy or their traces were investigated using scanning electron microscopy (SEM) of epoxy resin casts. A visualisation of the microendoliths in situ, that is within their complex microbioerosion structures, was previously limited to the laborious and time-consuming double-inclusion cast-embedding technique. Here, we assess the applicability of various fluorescence staining methods in combination with confocal laser scanning microscopy (CLSM) for the study of fungal microendoliths in situ in partly translucent mollusc shells. Among the tested methods, specific staining with dyes against the DNA (nuclei) of the trace making organisms turned out to be a useful and reproducible approach. Bright and clearly delineated fluorescence signals of microendolithic nuclei allow, for instance, a differentiation between abandoned and still populated microborings. Furthermore, infiltrating the microborings with fluorescently stained resin seems to be of great capability for the visualisation and quantification of microbioerosion structures in their original spatial orientation. Potential fields of application are rapid assessments of endolithic bio- and ichnodiversity and the quantification of the impact of microendoliths on the overall calcium carbonate turnover. The method can be applied after CLSM of the stained microendoliths and retains the opportunity for a subsequent investigation of epoxy casts with SEM. This allows a three-fold approach in studying microendoliths in the context of their microborings, thereby fostering the integration of biological and ichnological aspects of microbial bioerosion.


Bioerosion describes the process of active erosion of hard substrates induced by the activity of living organisms. Beside numerous marine macroscopic bioeroding organisms such as sponges, annelids or bivalves, there is an astonishing 'hidden diversity' of microscopic bioeroding organisms which produce minute tunnels and chambers, for example in calcareous shells and skeletons of other marine organisms. These so-called microendoliths belong to bacteria, microalgae, foraminiferans, or fungi. Due to their lifestyle hidden inside the hard substrate, scientific investigation is often laborious and involves complex preparation techniques, electron microscopy, or even nano-computed tomography. Photo-autotrophic microendoliths (eg cyanobacteria and algae) have been studied with fluorescence microscopy using autofluorescence properties, for example of their chloroplasts. However, microendoliths of aphotic depths, mostly of fungal origin, do not show autofluorescence. With the present study we test different fluorescent dyes staining the microbioeroders 'in situ', that is, inside their microscopic tunnels, and visualise them using three-dimensional confocal laser scanning microscopy (CLSM). Very good results have been obtained with the dye Sybr Green I that stains DNA molecules and thereby the cell nuclei of the microendoliths. This method can be used, for instance, to measure the infestation rate of a given substrate by discriminating between abandoned microborings and those still inhabited by microendoliths. Another approach that was successfully tested in the course of the present study was the infiltration of the cleaned microborings with resin that was previously mixed with the fluorescent dye Safranin-O. The datasets obtained with the CLSM were used to reconstruct 3D-surface models of the microborings of three different microendoliths. Such models can be used to analyse the original spatial arrangement inside the hard substrate and to measure exact volumes. The resulting possibility to make exact quantifications is of high value for future investigations that focus on the role and proportion of microbioerosion in the (re)cycling of marine carbonates.


Subject(s)
Carbonates , Fungi , Microscopy, Confocal/methods , Microscopy, Electron, Scanning/instrumentation , Microscopy, Electron, Scanning/methods , Staining and Labeling/methods
3.
J Proteome Res ; 19(6): 2391-2403, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32357013

ABSTRACT

Neuronal development is a complex multistep process that shapes neurons by progressing though several typical stages, including axon outgrowth, dendrite formation, and synaptogenesis. Knowledge of the mechanisms of neuronal development is mostly derived from the study of animal models. Advances in stem cell technology now enable us to generate neurons from human induced pluripotent stem cells (iPSCs). Here we provide a mass spectrometry-based quantitative proteomic signature of human iPSC-derived neurons, i.e., iPSC-derived induced glutamatergic neurons and iPSC-derived motor neurons, throughout neuronal differentiation. Tandem mass tag 10-plex labeling was carried out to perform proteomic profiling of cells at different time points. Our analysis reveals significant expression changes (FDR < 0.001) of several key proteins during the differentiation process, e.g., proteins involved in the Wnt and Notch signaling pathways. Overall, our data provide a rich resource of information on protein expression during human iPSC neuron differentiation.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Cell Differentiation , Humans , Neurogenesis , Proteome/genetics , Proteomics
4.
Cell Rep ; 24(4): 791-800, 2018 07 24.
Article in English | MEDLINE | ID: mdl-30044976

ABSTRACT

Neuron morphology and function are highly dependent on proper organization of the cytoskeleton. In neurons, the centrosome is inactivated early in development, and acentrosomal microtubules are generated by mechanisms that are poorly understood. Here, we show that neuronal migration, development, and polarization depend on the multi-subunit protein HAUS/augmin complex, previously described to be required for mitotic spindle assembly in dividing cells. The HAUS complex is essential for neuronal microtubule organization by ensuring uniform microtubule polarity in axons and regulation of microtubule density in dendrites. Using live-cell imaging and high-resolution microscopy, we found that distinct HAUS clusters are distributed throughout neurons and colocalize with γ-TuRC, suggesting local microtubule nucleation events. We propose that the HAUS complex locally regulates microtubule nucleation events to control proper neuronal development.


Subject(s)
Centrosome/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neurons/cytology , Neurons/metabolism , Animals , Axons/metabolism , Cell Movement/physiology , Cell Polarity/physiology , Dendrites/metabolism , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/genetics , Pregnancy
5.
Nat Commun ; 9(1): 2773, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30018294

ABSTRACT

Mixed polarity microtubule organization is the signature characteristic of vertebrate dendrites. Oppositely oriented microtubules form the basis for selective cargo trafficking in neurons, however the mechanisms that establish and maintain this organization are unclear. Here, we show that APC2, the brain-specific homolog of tumor-suppressor protein adenomatous polyposis coli (APC), promotes dynamics of minus-end-out microtubules in dendrites. We found that APC2 localizes as distinct clusters along microtubule bundles in dendrites and that this localization is driven by LC8-binding and two separate microtubule-interacting domains. Depletion of APC2 reduces the plus end dynamics of minus-end-out oriented microtubules, increases microtubule sliding, and causes defects in dendritic morphology. We propose a model in which APC2 regulates dendrite development by promoting dynamics of minus-end-out microtubules.


Subject(s)
Cytoplasmic Dyneins/genetics , Cytoskeletal Proteins/genetics , Dendrites/metabolism , Hippocampus/metabolism , Microtubules/metabolism , Animals , COS Cells , Chlorocebus aethiops , Cytoplasmic Dyneins/metabolism , Cytoskeletal Proteins/metabolism , Dendrites/ultrastructure , Embryo, Mammalian , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Hippocampus/cytology , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microtubules/ultrastructure , Molecular Imaging , Neurogenesis/genetics , Neurons/metabolism , Neurons/ultrastructure , Primary Cell Culture , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats , Rats, Wistar , Signal Transduction , Time-Lapse Imaging , Red Fluorescent Protein
6.
Curr Biol ; 28(13): 2081-2093.e6, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29910073

ABSTRACT

In neurons, microtubules form dense bundles and run along the length of axons and dendrites. Occasionally, dendritic microtubules can grow from the shaft directly into dendritic spines. Microtubules target dendritic spines that are undergoing activity-dependent changes, but the mechanism by which microtubules enter spines has remained poorly understood. Using live-cell imaging, high-resolution microscopy, and local glutamate uncaging, we show that local actin remodeling at the base of a spine promotes microtubule spine targeting. Microtubule spine entry is triggered by activation of N-Methyl-D-aspartic acid (NMDA) receptors and calcium influx and requires dynamic actin remodeling. Activity-dependent translocation of the actin remodeling protein cortactin out of the spine correlates with increased microtubule targeting at a single spine level. Our data show that the structural changes in the actin cytoskeleton at the base of the spine are directly involved in microtubule entry and emphasize the importance of actin-microtubule crosstalk in orchestrating synapse function and plasticity.


Subject(s)
Actins/metabolism , Dendritic Spines/metabolism , Hippocampus/physiology , Microtubules/metabolism , Neurons/physiology , Animals , Female , Male , Mice, Inbred C57BL , Rats , Rats, Wistar
7.
Neuron ; 97(5): 1110-1125.e14, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29478916

ABSTRACT

Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca2+-transients are still poorly defined. We show that the postsynaptic Ca2+ sensor caldendrin orchestrates nano-domain actin dynamics that are essential for actin remodeling in the early phase of long-term potentiation (LTP). Steep elevation in spinous [Ca2+]i disrupts an intramolecular interaction of caldendrin and allows cortactin binding. The fast on and slow off rate of this interaction keeps cortactin in an active conformation, and protects F-actin at the spine base against cofilin-induced severing. Caldendrin gene knockout results in higher synaptic actin turnover, altered nanoscale organization of spinous F-actin, defects in structural spine plasticity, LTP, and hippocampus-dependent learning. Collectively, the data indicate that caldendrin-cortactin directly couple [Ca2+]i to preserve a minimal F-actin pool that is required for actin remodeling in the early phase of LTP.


Subject(s)
Calcium Signaling/physiology , Calcium-Binding Proteins/deficiency , Dendritic Spines/metabolism , Long-Term Potentiation/physiology , Synaptic Potentials/physiology , Animals , COS Cells , Calcium-Binding Proteins/genetics , Cells, Cultured , Chlorocebus aethiops , Dendritic Spines/chemistry , Dendritic Spines/genetics , HEK293 Cells , Hippocampus/chemistry , Hippocampus/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Rats , Rats, Wistar
8.
J Neurosci ; 36(4): 1071-85, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26818498

ABSTRACT

In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus- and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. SIGNIFICANCE STATEMENT: Live-cell imaging was used to systematically analyze microtubule organization in primary cultures of rat hippocampal neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neuron in somatosensory cortex of living mice. In vitro and in vivo, all microtubules have a plus-end-out orientation in axons, whereas microtubules in dendrites have mixed orientations. Interestingly, newly formed neurites of nonpolarized neurons already contain mixed microtubules, and the specific organization of uniform plus-end-out microtubules only occurs during axon formation. Based on these findings, the authors propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization.


Subject(s)
Axons/physiology , Cell Polarity/physiology , Microtubules/physiology , Neurons/cytology , Animals , Cells, Cultured , Centrioles/physiology , Cerebral Cortex/cytology , Dendrites/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hippocampus/cytology , Humans , In Vitro Techniques , Mice , Mice, Transgenic , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Time Factors , Tubulin/metabolism
9.
Methods Cell Biol ; 131: 107-26, 2016.
Article in English | MEDLINE | ID: mdl-26794510

ABSTRACT

The microtubule (MT) cytoskeleton plays an active role during different phases of neuronal development and is an essential structure for stable neuronal morphology. MTs determine axon formation, control polarized cargo trafficking, and regulate the dynamics of dendritic spines, the major sites of excitatory synaptic input. Defects in MT function have been linked to various neurological and neurodegenerative diseases and recent studies highlight neuronal MTs as a potential target for therapeutic intervention. Thus, understanding MT dynamics and its regulation is of central importance to study many aspects of neuronal function. The dynamics of MT in neurons can be studied by visualizing fluorescently tagged MT plus-end tracking proteins (+TIPs). Tracking of +TIP trajectories allows analyzing the speeds and directionality of MT growth in axons and dendrites. Numerous labs now use +TIP to track growing MTs in dissociated neuron cultures. This chapter provides detailed methods for live imaging of MT dynamics in organotypic hippocampal slice cultures. We describe protocols for culturing and transducing organotypic slices and imaging MT dynamics by spinning disk confocal microscopy.


Subject(s)
Axons/metabolism , Cytoskeleton/metabolism , Dendrites/metabolism , Hippocampus/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Animals , Cell Line , HEK293 Cells , Hippocampus/cytology , Humans , Lentivirus/genetics , Lentivirus/growth & development , Mice , Mice, Inbred C57BL , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Organ Culture Techniques , Rats , Staining and Labeling , Transduction, Genetic
10.
Cell Rep ; 13(5): 933-43, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26565907

ABSTRACT

Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs) at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C) or myosin (MyosinV/VI) motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.


Subject(s)
Endosomes/metabolism , Receptors, AMPA/metabolism , Synapses/metabolism , Actin Cytoskeleton/metabolism , Animals , Cells, Cultured , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Female , Kinesins/metabolism , Male , Mice , Mice, Inbred C57BL , Myosins/metabolism , Rats , Receptors, AMPA/genetics , Synapses/ultrastructure , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
11.
Neuron ; 82(5): 1058-73, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24908486

ABSTRACT

In neurons, most microtubules are not associated with a central microtubule-organizing center (MTOC), and therefore, both the minus and plus-ends of these non-centrosomal microtubules are found throughout the cell. Microtubule plus-ends are well established as dynamic regulatory sites in numerous processes, but the role of microtubule minus-ends has remained poorly understood. Using live-cell imaging, high-resolution microscopy, and laser-based microsurgery techniques, we show that the CAMSAP/Nezha/Patronin family protein CAMSAP2 specifically localizes to non-centrosomal microtubule minus-ends and is required for proper microtubule organization in neurons. CAMSAP2 stabilizes non-centrosomal microtubules and is required for neuronal polarity, axon specification, and dendritic branch formation in vitro and in vivo. Furthermore, we found that non-centrosomal microtubules in dendrites are largely generated by γ-Tubulin-dependent nucleation. We propose a two-step model in which γ-Tubulin initiates the formation of non-centrosomal microtubules and CAMSAP2 stabilizes the free microtubule minus-ends in order to control neuronal polarity and development.


Subject(s)
Axons/metabolism , Cytoskeletal Proteins/metabolism , Dendrites/metabolism , Microtubules/metabolism , Pyramidal Cells/metabolism , Animals , Axons/ultrastructure , Dendrites/ultrastructure , Hippocampus/embryology , Hippocampus/metabolism , Hippocampus/ultrastructure , Humans , Microtubule-Associated Proteins , Microtubules/ultrastructure , Pyramidal Cells/ultrastructure , Rats
12.
Biochem J ; 453(1): 83-100, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23560819

ABSTRACT

The serine peptidase neurotrypsin is stored in presynaptic nerve endings and secreted in an inactive zymogenic form by synaptic activity. After activation, which requires activity of postsynaptic NMDA (N-methyl-D-aspartate) receptors, neurotrypsin cleaves the heparan sulfate proteoglycan agrin at active synapses. The resulting C-terminal 22-kDa fragment of agrin induces dendritic filopodia, which are considered to be precursors of new synapses. In the present study, we investigated the role of GAGs (glycosaminoglycans) in the activation of neurotrypsin and neurotrypsin-dependent agrin cleavage. We found binding of neurotrypsin to the GAG side chains of agrin, which in turn enhanced the activation of neurotrypsin by proprotein convertases and resulted in enhanced agrin cleavage. A similar enhancement of neurotrypsin binding to agrin, neurotrypsin activation and agrin cleavage was induced by the four-amino-acid insert at the y splice site of agrin, which is crucial for the formation of a heparin-binding site. Non-agrin GAGs also contributed to binding and activation of neurotrypsin and, thereby, to agrin cleavage, albeit to a lesser extent. Binding of neurotrypsin to cell-surface glycans locally restricts its conversion from zymogen into active peptidase. This provides the molecular foundation for the local action of neurotrypsin at or in the vicinity of its site of synaptic secretion. By its local action at synapses with correlated pre- and post-synaptic activity, the neurotrypsin-agrin system fulfils the requirements for a mechanism serving experience-dependent modification of activated synapses, which is essential for adaptive structural reorganizations of neuronal circuits in the developing and/or adult brain.


Subject(s)
Agrin/metabolism , Glycosaminoglycans/pharmacology , Presynaptic Terminals/metabolism , Serine Endopeptidases/metabolism , Animals , Binding Sites , COS Cells , Chlorocebus aethiops , Enzyme Activation , Glycosaminoglycans/metabolism , HEK293 Cells , Humans , Proprotein Convertases/metabolism , Syndecan-2/pharmacology
13.
Biol Open ; 1(8): 761-74, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-23213470

ABSTRACT

Endocytosis of amyloid-ß precursor protein (APP) is thought to represent the major source of substrate for the production of the amyloidogenic Aß peptide by the ß-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aß secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

14.
J Neurosci Methods ; 204(1): 144-149, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22108140

ABSTRACT

The quantification of synapses in neuronal cultures is essential in studies of the molecular mechanisms underlying synaptogenesis and synaptic plasticity. Conventional counting of synapses based on morphological or immunocytochemical criteria is extremely work-intensive. We developed a fully automated method which quantifies synaptic elements and complete synapses based on immunocytochemistry. Pre- and postsynaptic elements are detected by their corresponding fluorescence signals and their proximity to dendrites. Synapses are defined as the combination of a pre- and postsynaptic element within a given distance. The analysis is performed in three dimensions and all parameters required for quantification can be easily adjusted by a graphical user interface. The integrated batch processing enables the analysis of large datasets without any further user interaction and is therefore efficient and timesaving. The potential of this method was demonstrated by an extensive quantification of synapses in neuronal cultures from DIV 7 to DIV 21. The method can be applied to all datasets containing a pre- and postsynaptic labeling plus a dendritic or cell surface marker.


Subject(s)
Algorithms , Hippocampus/cytology , Image Interpretation, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Neurons/cytology , Pattern Recognition, Automated/methods , Synapses/ultrastructure , Animals , Cells, Cultured , Image Enhancement/methods , Mice , Reproducibility of Results , Sensitivity and Specificity
15.
J Physiol ; 589(17): 4353-64, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21768266

ABSTRACT

A key feature at excitatory synapses is the remodelling of dendritic spines, which in conjunction with receptor trafficking modifies the efficacy of neurotransmission. Here we investigated whether activation of cholinergic receptors, which can modulate synaptic plasticity, also mediates changes in dendritic spine structure. Using confocal time-lapse microscopy in mouse slice cultures we found that brief activation of muscarinic receptors induced the emergence of fine filopodia from spine heads in all CA1 pyramidal cells examined. This response was widespread occurring in 48% of imaged spines, appeared within minutes, was reversible, and was blocked by atropine. Electron microscopic analyses showed that the spine head filopodia (SHFs) extend along the presynaptic bouton. In addition, the decay time of miniature EPSCs was longer after application of the muscarinic acetylcholine receptor agonist methacholine (MCh). Both morphological and electrophysiological changes were reduced by preventing microtubule polymerization with nocodazole. This extension of SHFs during cholinergic receptor activation represents a novel structural form of subspine plasticity that may regulate synaptic properties by fine-tuning interactions between presynaptic boutons and dendritic spines.


Subject(s)
Pseudopodia , Pyramidal Cells , Animals , Dendritic Spines , Hippocampus , Receptors, Muscarinic , Synapses , Synaptic Transmission
16.
Proteomics ; 10(21): 3775-88, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20925061

ABSTRACT

Kinesin motors play crucial roles in the delivery of membranous cargo to its destination and thus for the establishment and maintenance of cellular polarization. Recently, calsyntenin-1 was identified as a cargo-docking protein for Kinesin-1-mediated axonal transport of tubulovesicular organelles along axons of central nervous system neurons. To further define the function of calsyntenin-1, we immunoisolated calsyntenin-1 organelles from murine brain homogenates and determined their proteome by MS. We found that calsyntenin-1 organelles are endowed with components of the endosomal trafficking machinery and contained the ß-amyloid precursor protein (APP). Detailed biochemical analyses of calsyntenin-1 immunoisolates in conjunction with immunocytochemical colocalization studies with cultured hippocampal neurons, using endosomal marker proteins for distinct subcompartments of the endosomal pathways, indicated that neuronal axons contain at least two distinct, nonoverlapping calsyntenin-1-containing transport packages: one characterized as early-endosomal, APP positive, the other as recycling-endosomal, APP negative. We postulate that calsyntenin-1 acts as a general mediator of anterograde axonal transportation of endosomal vesicles. In this role, calsyntenin-1 may actively contribute to axonal growth and pathfinding in the developing as well as to the maintenance of neuronal polarity in the adult nervous system; further, it may actively contribute to the stabilization of APP during its anterograde axonal trajectory.


Subject(s)
Axons/metabolism , Biological Transport/physiology , Calcium-Binding Proteins/metabolism , Endosomes/chemistry , Proteomics/methods , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Animals , Calcium-Binding Proteins/chemistry , Electrophoresis, Polyacrylamide Gel , Endocytosis/physiology , Endosomes/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Immunohistochemistry , Kinesins/chemistry , Kinesins/metabolism , Mice , Prosencephalon/cytology , Prosencephalon/metabolism
17.
J Biol Chem ; 283(13): 8310-7, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18218632

ABSTRACT

Migration of oligodendrocyte precursors along axons is a necessary prerequisite for myelination, but little is known about underlying mechanisms. NG2 is a large membrane proteoglycan implicated in oligodendrocyte migration. Here we show that a PDZ domain protein termed syntenin-1 interacts with NG2 and that syntenin-1 is necessary for normal rates of migration. The association of syntenin-1 with NG2, identified in a yeast two-hybrid screen, was confirmed by colocalization of both proteins within processes of oligodendroglial precursor cells and by coimmunoprecipitation from cell extracts. Syntenin-1 also colocalizes with NG2 in "co-capping" assays, demonstrating a lateral association of both proteins in live oligodendrocytes. RNA interference-mediated down-regulation of syntenin-1 in glial cells results in a significant reduction of migration in vitro, as does the presence of polyclonal antibody against NG2. Thus syntenin plays a role in the migration of oligodendroglial precursors, and we suggest that NG2-syntenin-1 interactions contribute to this.


Subject(s)
Antigens/metabolism , Cell Differentiation , Cell Movement , Oligodendroglia/cytology , Oligodendroglia/metabolism , Proteoglycans/metabolism , Syntenins/metabolism , Amino Acid Motifs , Animals , Antigens/chemistry , Antigens/genetics , Cells, Cultured , Humans , Mice , Neuroglia/metabolism , Protein Binding , Proteoglycans/chemistry , Proteoglycans/genetics , RNA, Small Interfering/genetics , Syntenins/genetics , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...