Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Planta Med ; 90(9): 717-725, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885660

ABSTRACT

The search for new active substances against SARS-CoV-2 is still a central challenge after the COVID-19 pandemic. Antiviral agents to complement vaccination are an important pillar in the clinical situation. Selected cannabinoids such as cannabigerol, cannabicyclol, cannabichromene, and cannabicitran from Cannabis sativa and synthetic homologues of cannabigerol and cannabicyclol were evaluated for effects on the cell viability of Vero cells (CC50 of cannabigerol and cannabicyclol 40 resp. 38 µM) and reduced virus entry of vesicular stomatitis pseudotyped viruses with surface-expressed SARS-CoV-2 spike protein at 20 µM. In addition to a reduction of pseudotyped virus entry, a titer reduction assay on Vero cells after preincubation of Wuhan SARS-CoV-2 significantly confirmed antiviral activity. Investigations on the molecular targets addressed by cannabigerol and cannabicyclol indicated that both compounds are inhibitors of SARS-CoV-2 spike protein-mediated membrane fusion, as could be shown by a virus-free reporter fusion inhibition assay (EC50 for cannabigerol 5.5 µM and for cannabicyclol 10.8 µM) and by monitoring syncytia formation in Vero reporter cells. Selectivity indices were calculated as 7.4 for cannabigerol and 3.5 for cannabicyclol. Systematic semisynthetic alterations of cannabigerol and cannabicyclol indicated that the side chains of both compounds do not contribute to the observed anti-membrane fusion activity.


Subject(s)
Antiviral Agents , Cannabinoids , SARS-CoV-2 , Virus Internalization , Chlorocebus aethiops , Vero Cells , Animals , SARS-CoV-2/drug effects , Cannabinoids/pharmacology , Antiviral Agents/pharmacology , Virus Internalization/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Humans , Cell Survival/drug effects , COVID-19 Drug Treatment , Cannabis/chemistry
2.
PLoS Pathog ; 19(7): e1010986, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37440521

ABSTRACT

Influenza A virus (IAV), like any other virus, provokes considerable modifications of its host cell's metabolism. This includes a substantial increase in the uptake as well as the metabolization of glucose. Although it is known for quite some time that suppression of glucose metabolism restricts virus replication, the exact molecular impact on the viral life cycle remained enigmatic so far. Using 2-deoxy-d-glucose (2-DG) we examined how well inhibition of glycolysis is tolerated by host cells and which step of the IAV life cycle is affected. We observed that effects induced by 2-DG are reversible and that cells can cope with relatively high concentrations of the inhibitor by compensating the loss of glycolytic activity by upregulating other metabolic pathways. Moreover, mass spectrometry data provided information on various metabolic modifications induced by either the virus or agents interfering with glycolysis. In the presence of 2-DG viral titers were significantly reduced in a dose-dependent manner. The supplementation of direct or indirect glycolysis metabolites led to a partial or almost complete reversion of the inhibitory effect of 2-DG on viral growth and demonstrated that indeed the inhibition of glycolysis and not of N-linked glycosylation was responsible for the observed phenotype. Importantly, we could show via conventional and strand-specific qPCR that the treatment with 2-DG led to a prolonged phase of viral mRNA synthesis while the accumulation of genomic vRNA was strongly reduced. At the same time, minigenome assays showed no signs of a general reduction of replicative capacity of the viral polymerase. Therefore, our data suggest that the significant reduction in IAV replication by glycolytic interference occurs mainly due to an impairment of the dynamic regulation of the viral polymerase which conveys the transition of the enzyme's function from transcription to replication.


Subject(s)
Influenza A virus , Influenza A virus/genetics , Virus Replication/physiology , Transcription, Genetic , Nucleotidyltransferases/metabolism , Genomics , Glycolysis , RNA, Viral/genetics , RNA, Viral/metabolism
3.
Biomolecules ; 13(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36979408

ABSTRACT

In late 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of coronavirus disease 2019 (COVID-19) emerged in China and spread rapidly around the world, causing an ongoing pandemic of global concern. COVID-19 proceeds with moderate symptoms in most patients, whereas others experience serious respiratory illness that requires intensive care treatment and may end in death. The severity of COVID-19 is linked to several risk factors including male sex, comorbidities, and advanced age. Apart from respiratory complications, further impairments by COVID-19 affecting other tissues of the human body are observed. In this respect, the human kidney is one of the most frequently affected extrapulmonary organs and acute kidney injury (AKI) is known as a direct or indirect complication of SARS-CoV-2 infection. The aim of this work was to investigate the importance of the protein angiotensin-converting enzyme 2 (ACE2) for a possible cell entry of SARS-CoV-2 into human kidney cells. First, the expression of the cellular receptor ACE2 was demonstrated to be decisive for viral SARS-CoV-2 cell entry in human AB8 podocytes, whereas the presence of the transmembrane protease serine 2 (TMPRSS2) was dispensable. Moreover, the ACE2 protein amount was well detectable by mass spectrometry analysis in human kidneys, while TMPRSS2 could be detected only in a few samples. Additionally, a negative correlation of the ACE2 protein abundance to male sex and elderly aged females in human kidney tissues was demonstrated in this work. Last, the possibility of a direct infection of kidney tubular renal structures by SARS-CoV-2 was demonstrated.


Subject(s)
COVID-19 , Aged , Female , Humans , Male , Angiotensin-Converting Enzyme 2 , Kidney/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/metabolism
4.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35631357

ABSTRACT

For almost two years, the COVID-19 pandemic has constituted a major challenge to human health, particularly due to the lack of efficient antivirals to be used against the virus during routine treatment interventions. Multiple treatment options have been investigated for their potential inhibitory effect on SARS-CoV-2. Natural products, such as plant extracts, may be a promising option, as they have shown an antiviral activity against other viruses in the past. Here, a quantified extract of Hypericum perforatum was tested and found to possess a potent antiviral activity against SARS-CoV-2. The antiviral potency of the extract could be attributed to the naphtodianthrones hypericin and pseudohypericin, in contrast to other tested ingredients of the plant material, which did not show any antiviral activity. Hypericum perforatum and its main active ingredient hypericin were also effective against different SARS-CoV-2 variants (Alpha, Beta, Delta, and Omicron). Concerning its mechanism of action, evidence was obtained that Hypericum perforatum and hypericin may hold a direct virus-blocking effect against SARS-CoV-2 virus particles. Taken together, the presented data clearly emphasize the promising antiviral activity of Hypericum perforatum and its active ingredients against SARS-CoV-2 infections.

5.
Cell Mol Life Sci ; 79(1): 65, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013790

ABSTRACT

Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Fenamates/pharmacology , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Adult , Animals , COVID-19/metabolism , Cell Line , Cells, Cultured , Chlorocebus aethiops , Cytokines/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Replication/drug effects
6.
Int J Mol Sci ; 22(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540803

ABSTRACT

Distinct from ovarian estradiol, the steroid hormone 17ß-estradiol (E2) is produced in the brain and is involved in numerous functions, particularly acting as a neurosteroid. However, the physiological role of E2 and the mechanism of its effects are not well known. In hippocampal slices, 17ß-estradiol has been found to cause a modest increase in fast glutamatergic transmission; because some of these effects are rapid and acute, they might be mediated by membrane-associated receptors via nongenomic action. Moreover, activation of membrane estrogen receptors can rapidly modulate neuron function in a sex-specific manner. To further investigate the neurological role of E2, we examined the effect of E2, as an estrogen receptor (ER) agonist, on synaptic transmission in slices of the prefrontal cortex (PFC) and hippocampus in both male and female mice. Whole-cell recordings of spontaneous excitatory postsynaptic currents (sEPSC) in the PFC showed that E2 acts as a neuromodulator in glutamatergic transmission in the PFC in both sexes, but often in a cell-specific manner. The sEPSC amplitude and/or frequency responded to E2 in three ways, namely by significantly increasing, decreasing or having no response. Additional experiments using an agonist selective for ERß, diarylpropionitrile (DPN) showed that in males the sEPSC and spontaneous inhibitory postsynaptic currents sIPSC responses were similar to their E2 responses, but in females the estrogen receptor ß (ERß) agonist DPN did not influence excitatory transmission in the PFC. In contrast, in the hippocampus of both sexes E2 potentiated the gluatmatergic synaptic transmission in a subset of hippocampal cells. These data indicate that activation of E2 targeting probably a estrogen subtypes or different downstream signaling affect synaptic transmission in the brain PFC and hippocampus between males versus females mice.


Subject(s)
Estradiol/pharmacology , Estrogen Receptor alpha/physiology , Hippocampus/metabolism , Prefrontal Cortex/metabolism , Synaptic Transmission/physiology , Animals , Estrogen Receptor alpha/agonists , Excitatory Amino Acid Agents/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Female , GABA Agents/pharmacology , Hippocampus/drug effects , Inhibitory Postsynaptic Potentials/drug effects , Kinetics , Male , Mice , Mice, Inbred C57BL , Nitriles/pharmacology , Patch-Clamp Techniques , Prefrontal Cortex/drug effects , Propionates/pharmacology , Sex Characteristics , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...