Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 1072, 2019.
Article in English | MEDLINE | ID: mdl-31552072

ABSTRACT

Fusarium graminearum is a plant pathogenic fungus which is able to infect wheat and other economically important cereal crop species. The role of ethylene in the interaction with host plants is unclear and controversial. We have analyzed the inventory of genes with a putative function in ethylene production or degradation of the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC). F. graminearum, in contrast to other species, does not contain a candidate gene encoding ethylene-forming enzyme. Three genes with similarity to ACC synthases exist; heterologous expression of these did not reveal enzymatic activity. The F. graminearum genome contains in addition two ACC deaminase candidate genes. We have expressed both genes in E. coli and characterized the enzymatic properties of the affinity-purified products. One of the proteins had indeed ACC deaminase activity, with kinetic properties similar to ethylene-stress reducing enzymes of plant growth promoting bacteria. The other candidate was inactive with ACC but turned out to be a d-cysteine desulfhydrase. Since it had been reported that ethylene insensitivity in transgenic wheat increased Fusarium resistance and reduced the content of the mycotoxin deoxynivalenol (DON) in infected wheat, we generated single and double knockout mutants of both genes in the F. graminearum strain PH-1. No statistically significant effect of the gene disruptions on fungal spread or mycotoxin content was detected, indicating that the ability of the fungus to manipulate the production of the gaseous plant hormones ethylene and H2S is dispensable for full virulence.

2.
Environ Microbiol ; 17(8): 2588-600, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25403493

ABSTRACT

The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, which produced none of the known trichothecene mycotoxins despite causing normal disease symptoms. In rice cultures, a new trichothecene mycotoxin (named NX-2) was characterized by liquid chromatography-tandem mass spectrometry. Nuclear magnetic resonance measurements identified NX-2 as 3α-acetoxy-7α,15-dihydroxy-12,13-epoxytrichothec-9-ene. Compared with the well-known 3-acetyl-deoxynivalenol (3-ADON), it lacks the keto group at C-8 and hence is a type A trichothecene. Wheat ears inoculated with the isolated strains revealed a 10-fold higher contamination with its deacetylated form, named NX-3, (up to 540 mg kg(-1) ) compared with NX-2. The toxicities of the novel mycotoxins were evaluated utilizing two in vitro translation assays and the alga Chlamydomonas reinhardtii. NX-3 inhibits protein biosynthesis to almost the same extent as the prominent mycotoxin deoxynivalenol, while NX-2 is far less toxic, similar to 3-ADON. Genetic analysis revealed a different TRI1 allele in the N-isolates, which was verified to be responsible for the difference in hydroxylation at C-8.


Subject(s)
Edible Grain/microbiology , Food Contamination/analysis , Fusarium/metabolism , Mycotoxins/metabolism , Plant Diseases/microbiology , Chromatography, Liquid , Fusarium/genetics , Fusarium/isolation & purification , Genotype , Mycotoxins/biosynthesis , Mycotoxins/chemistry , North America , Oryza/microbiology , Trichothecenes/chemistry , Trichothecenes/metabolism , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...