Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 144: 182-190, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35378357

ABSTRACT

The biological leaching of metals from different waste streams by bacteria is intensively investigated to address metal recycling and circular economy goals. However, usually external addition of sulfuric acid is required to maintain the low pH optimum of the bacteria to ensure efficient leaching. Extremely acidophilic Acidithiobacillus spp. producing sulfuric acid and ferric iron have been investigated for several decades in the bioleaching of metal-containing ores. Their application has now been extended to the extraction of metals from artificial ores and other secondary sources. In this study, an optimized process for producing biogenic sulfuric acid from elemental sulfur by two sulfur-oxidizing species, A. thiooxidans and A. caldus and their combinations, was investigated in batch and stirred tank experiments. Using a combined culture of both species, 1.05 M and 1.4 M biogenic sulfuric acid was produced at 30 °C and 6% elemental sulfur in batch and semi continuous modes, respectively. The acid produced was then used to control the pH in a heap bioleaching system in which iron- and sulfur-oxidizing A. ferrooxidans was applied to biologically leach metals from waste incineration residuals. Metals like Cu, Ni, Al, Mn, and Zn were successfully recovered by 99, 93, 84, 77 and 68%, respectively within three weeks of heap bioleaching. Overall, a potential value recovery of incorporated metals >70% could be achieved. This highlights the potential and novelty of applying extremely acidophilic sulfur-oxidizing bacteria for cheap and efficient production of biogenic sulfuric acid and its use in pH control.


Subject(s)
Acidithiobacillus , Incineration , Bacteria , Iron , Metals , Sulfur , Sulfuric Acids
2.
J Mater Chem B ; 7(42): 6592-6603, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31589221

ABSTRACT

Management of infected wounds is one of the most costly procedures in the health care sector. Burn wounds are of significant importance due to the high infection risk that can possibly lead to severe consequences such as sepsis. Because antibiotic wound treatments have caused increasing antibiotic resistance in bacteria, there is currently a strong need for alternative strategies. Therefore, we developed new antimicrobial wound dressings consisting of pH-responsive human serum albumin/silk fibroin nanocapsules immobilized onto cotton/polyethylene terephthalate (PET) blends loaded with eugenol, which is an antimicrobial phenylpropanoid. Ultrasound-assisted production of eugenol-loaded nanocapsules resulted in particle sizes (hydrodynamic radii) between 319.73 ± 17.50 and 574.00 ± 92.76 nm and zeta potentials ranging from -10.39 ± 1.99 mV to -12.11 ± 0.59 mV. Because recent discoveries have indicated that the sweat glands contribute to wound reepithelialisation, release studies of eugenol were conducted in different artificial sweat formulas that varied in pH. Formulations containing 10% silk fibroin with lower degradation degree exhibited the highest release of 41% at pH 6.0. After immobilization, the functionalized cotton/PET blends were able to inhibit 81% of Staphylococcus aureus and 33% of Escherichia coli growth. Particle uniformity, silk fibroin concentration, and high surface-area-to-volume ratio of the produced nanocapsules were identified as the contributing factors leading to high antimicrobial activities against both strains. Therefore, the production of antimicrobial textiles using nanocapsules loaded with an active natural compound that will not contribute to antibiotic resistance is seen as a potential future alternative to commercially available antiseptic wound dressings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cotton Fiber , Eugenol/pharmacology , Nanocapsules/chemistry , Polyethylene Terephthalates/chemistry , Smart Materials/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Bandages , Carboxylic Ester Hydrolases/chemistry , Cell Line , Cellulase/chemistry , Cotton Fiber/toxicity , Drug Delivery Systems , Drug Liberation , Escherichia coli/drug effects , Eugenol/chemistry , Eugenol/toxicity , Fibroins/chemistry , Fibroins/toxicity , Humans , Nanocapsules/toxicity , Polyethylene Terephthalates/toxicity , Serum Albumin, Human/chemistry , Serum Albumin, Human/toxicity , Smart Materials/chemistry , Smart Materials/toxicity , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...