Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(12): 16887-16896, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33238103

ABSTRACT

Graphyne-based two-dimensional (2D) carbon allotropes feature extraordinary physical properties; however, their synthesis as crystalline single-layered materials has remained challenging. We report on the fabrication of large-area organometallic Ag-bis-acetylide networks and their structural and electronic properties on Ag(111) using low-temperature scanning tunneling microscopy combined with density functional theory (DFT) calculations. The metalated graphyne-based networks are robust at room temperature and assembled in a bottom-up approach via surface-assisted dehalogenative homocoupling of terminal alkynyl bromides. Large-area networks of several hundred nanometers with topological defects at domain boundaries are obtained due to the Ag-acetylide bonds' reversible nature. The thermodynamically controlled growth mechanism is explained through the direct observation of intermediates, which differ on Ag(111) and Au(111). Scanning tunneling spectroscopy resolved unoccupied states delocalized across the network. The energy of these states can be shifted locally by the attachment of a different number of Br atoms within the network. DFT revealed that free-standing metal-bis-acetylide networks are semimetals with a linear band dispersion around several high-symmetry points, which suggest the presence of Weyl points. These results demonstrate that the organometallic Ag-bis-acetylide networks feature the typical 2D material properties, which make them of great interest for fundamental studies and electronic materials in devices.

2.
Nanoscale ; 10(8): 3769-3776, 2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29411828

ABSTRACT

The electronic structure of surface-supported organometallic networks with Ag-bis-acetylide bonds that are intermediate products in the bottom-up synthesis of graphdiyne and graphdiyne-like networks were studied. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal a frontier, unoccupied electronic state that is delocalized along the entire organometallic network and proves the covalent nature of the Ag-bis-acetylide bonds. Density-functional theory (DFT) calculations corroborate the spatial distribution of the observed delocalized state and attribute it to band mixing of carbon and silver atoms combined with n-doping of the metal surface. The metal-bis-acetylide bonds are typical metal-organic bonds with mixed character containing covalent and strong ionic contributions. Moreover, the organometallic networks exhibit a characteristic graphene-like band structure with linear band dispersion at each K point.

3.
Chemistry ; 21(40): 14030-5, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26274348

ABSTRACT

The facile assembly of shell-by-shell (SbS)-coated nanoparticles [TiO2-PAC16]@shell 1-7 (PAC16 = hexadecylphosphonic acid), which are soluble in water and can be isolated as stable solids, is reported. In these functional architectures, an umpolung of dispersibility (organic apolar versus water) was accomplished by the noncovalent binding of ligands 1-7 to titania nanoparticles [TiO2-PAC16] containing a first covalent coating with PAC16. Ligands 1-7 are amphiphilic and form the outer second shell of [TiO2-PAC16]@shell 1-7. The tailor-designed dendritic building blocks 3-5 contain negative and positive charges in the same molecule, and ligands 6 and 7 contain a perylenetetracarboxylic acid dimide (PDI) core (6/7) as a photoactive reporter component. In the redox and photoactive system [TiO2-PAC16]@shell 7, electronic communication between the inorganic core to the PDI ligands was observed.

4.
Chemistry ; 20(51): 16969-79, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25336426

ABSTRACT

The synthesis and characterization of a new type of chromophore, namely PePc consisting of a central phthalocyanine core and four fused perylene-bisimide (PBI) units is described for the first time. The entire architecture represents a highly extended conjugated heterocyclic π-system with C4h symmetry. In order to guarantee pronounced solubility in organic solvents the corresponding PBI units were bay-functionalized with tert-butylphenoxy substituents. Next to the metal-free macrocycle, PePcH2 , also metallated macrocycles PePcM (M=Zn, Ni, Pb, Ru, Fe) were synthesized. The extensive fusion of the corresponding aromatic building blocks to the very large extended π-system leads to a very narrow HOMO-LUMO gap and as a consequence to transparency in the visible but light absorption in the NIR region. Significantly, the azomethine N-atoms N1N4 of PePcM and PePcH2 are highly basic. The corresponding tetraprotonated systems can only be deprotonated with very strong non-nucleophilic bases such as phosphazene bases. In the protonated forms PePcMH4 (4+) and PePcMH6 (4+) the absorption maximum is shifted back to the visible region due to the loss of conjugation. The experimental findings were corroborated with quantum mechanical calculations.


Subject(s)
Coloring Agents/chemistry , Imides/chemistry , Indoles/chemistry , Indoles/chemical synthesis , Metals/chemistry , Perylene/analogs & derivatives , Perylene/chemistry , Isoindoles , Molecular Structure , Quantum Theory
5.
Chemistry ; 20(9): 2529-36, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24488528

ABSTRACT

A new prototype of dendritic perylenes suitable for the chemical functionalization of inorganic nanoparticles was synthesized and characterized. The bay-functionalized perylene core of these molecular architectures was coupled to a catechol moiety, which serves as an anchor group for the functionalization of metal oxides, in particular ZnO. To increase the solubility of both the perylene and the targeted hybrid nanostructures, a Newkome-type dendron bearing nine positive charges was introduced. This charge was also employed to stabilize the nanoparticles and further protect them from Ostwald ripening through Coulombic repulsion. ZnO quantum dots with an average diameter of 5 nm were synthesized and functionalized with the perylene derivative. Successful functionalization was clearly demonstrated by dynamic light scattering, zeta-potential measurements, thermogravimetric analysis/MS, and UV/Vis and fluorescence spectroscopy. The generated particle dispersions were stable against agglomeration for more than eight weeks.


Subject(s)
Nanoparticles/chemistry , Nanostructures/chemistry , Perylene/chemistry , Quantum Dots/chemistry , Zinc Oxide/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...