Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 144(4): 044301, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26827211

ABSTRACT

We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H2 treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a "non-harmonic" response of H2 to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.

2.
Phys Chem Chem Phys ; 17(21): 14088-95, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25959839

ABSTRACT

Photodriven molecular switches are sometimes hindered in their performance by forming byproducts which act as dead ends in sequences of switching cycles, leading to rapid fatigue effects. Understanding the reaction pathways to unwanted byproducts is a prerequisite for preventing them. This article presents a study of the photochemical reaction pathways for byproduct formation in the photochromic switch 1,2-bis-(3-thienyl)-ethene. Specifically, using single- and multi-reference methods the post-deexcitation reaction towards the byproduct in the electronic ground state S0 when starting from the S1-S0 conical intersection (CoIn), is considered in detail. We find an unusual low-energy pathway, which offers the possibility for the formation of a dyotropic byproduct. Several high-energy pathways can be excluded with high probability.

3.
Phys Chem Chem Phys ; 16(6): 2483-90, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24358466

ABSTRACT

With the present theoretical study of the photochemical switching of E-methylfurylfulgide we contribute an important step towards the understanding of the photochemical processes in furylfulgide-related molecules. We have carried out large-scale, full-dimensional direct semiempirical configuration-interaction surface-hopping dynamics of the photoinduced ring-closure reaction. Simulated static and dynamical UV/Vis-spectra show good agreement with experimental data of the same molecule. By a careful investigation of our dynamical data, we were able to identify marked differences to the dynamics of the previously studied E-isopropylfurylfulgide. With our simulations we can not only reproduce the experimentally observed quantum yield differences qualitatively but we can also pinpoint two reasons for them: kinematics and pre-orientation. With our analysis, we thus offer straightforward molecular explanations for the high sensitivity of the photodynamics towards seemingly minor changes in molecular constitution. Beyond the realm of furylfulgides, these insights provide additional guidance to the rational design of photochemically switchable molecules.

4.
Photochem Photobiol Sci ; 12(3): 511-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23224342

ABSTRACT

A systematic study is reported of the photochemical properties of the multi-azobenzene compounds bis[4-(phenylazo)phenyl]amine (BPAPA) and tris[4-(phenylazo)phenyl]amine (TPAPA) compared to the parent molecule 4-aminoazobenzene (AAB). The bis- and tris-azobenzenes were synthesised by a variant of the Ullmann reaction and exist in their stable all-E forms at room temperature. Striking changes in the spectral positions and intensities of their first ππ* absorption bands compared to AAB reveal strong electronic coupling between the AB units. The nature of the excited states was explored by quantum chemical calculations at the approximate coupled-cluster (CC2) level. Upon UV/VIS irradiation, the molecules isomerise to the Z-isomer (AAB), ZE- and ZZ-isomers (BPAPA), and ZEE-, ZZE- and ZZZ-isomers (TPAPA), respectively. The photoswitching behaviours were investigated by UV/VIS and NMR spectroscopies. All individual isomers were detected by one-dimensional (1D) (1)H NMR spectroscopy (BPAPA) and two-dimensional (2D) HSQC NMR spectroscopy (TPAPA). A kinetic analysis provided the isomer-specific thermal lifetimes. The variance of the thermal lifetimes demonstrates a dependence of the Z-E isomerisation on the chromophore size and number of AB units.

5.
Phys Chem Chem Phys ; 14(35): 12193-201, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22850439

ABSTRACT

As an important theoretical step towards unraveling the mechanistic details of the photochemical switching processes in molecules of the fulgide type, we carried out a large-scale, full-dimensional computational study of the ring closure reaction of E-iPr-furylfulgide. Simulated static UV spectra and femtosecond transient spectra are in good agreement with their experimental counterparts. Using surface-hopping photodynamics simulations, we identify three major de-excitation pathways and their interplay. The dominant photochemical pathway (70% of the trajectories) allows for ring closure, while the two minor pathways involve E-Z double bond isomerization rather than cyclization. The relative abundance of the pathways is rationalized by arguments linking structure with dynamics. It should be emphasized, however, that the distinction into three pathways is only a simplified interpretational model, since the actual dynamical trajectories do not strictly follow these idealized pathways but often show mixed behaviour, evolving along two or three of them during the course of the simulation.

6.
Phys Chem Chem Phys ; 13(3): 1054-63, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21072405

ABSTRACT

The ultrafast Z→E and E→Z photoisomerisation dynamics of 5,6-dihydrodibenzo[c,g][1,2]diazocine (1), the parent compound of a class of bridged azobenzene-based photochromic molecular switches with a severely constrained eight-membered heterocyclic ring as central unit, have been studied by femtosecond time-resolved spectroscopy in n-hexane as solvent and by quantum chemical calculations. The diazocine contrasts with azobenzene (AB) in that its Z rather than E isomer is the energetically more stable form. Moreover, it stands out compared to AB for the spectrally well separated S(1)(nπ*) absorption bands of its two isomers. The Z isomer absorbs at around λ = 404 nm, the E form has its absorption maximum around λ = 490 nm. The observed transient spectra following S(1)(nπ*) photoexcitation show ultrafast excited-state decays with time constants τ(1) = 70 fs for the Z and <50 fs for the E isomer reflecting very fast departures of the excited wave packets from the S(1) Franck-Condon regions and τ(2) = 270 fs (320 fs) related to the Z→E (resp. E→Z) isomerisations. Slower transient absorption changes on the time scale of τ(3) = 5 ps are due to vibrational cooling of the reaction products. The results show that the unique steric constraints in the diazocine do not hinder, but accelerate the molecular isomerisation dynamics and increase the photoswitching efficiencies, contrary to chemical intuition. The observed isomerisation times and quantum yields are rationalised on the basis of CASPT2//CASSCF calculations by a S(1)/S(0) conical intersection seam at a CNNC dihedral angle of ≈96° involving twisting and torsion of the central CNNC moiety. With improved photochromism, high quantum yields, short reaction times and good photostability, diazocine 1 and its derivatives constitute outstanding candidates for photoswitchable molecular tweezers and other applications.


Subject(s)
Azo Compounds/chemistry , Azocines/chemistry , Hexanes/chemistry , Isomerism , Molecular Dynamics Simulation , Photochemical Processes , Quantum Theory , Spectrophotometry, Ultraviolet
7.
J Chem Phys ; 133(12): 124305, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20886930

ABSTRACT

In a large-scale simulation study of ultrafast photochemical dynamics for an azobenzene compound with an additional ethylenic bridge we have found unexpected features: while the dynamics starting from the Z isomer follow a barrierless path with steep gradients, the dynamics starting from the E isomer proceed through a different conical intersection surrounded by a rather flat potential energy landscape and then encounter a sizeable barrier in the electronic ground state that markedly influences the reaction behavior. Direct comparisons with experimental static UV spectra, quantum yields, and transient absorption spectra show good agreement and reveal signatures of this unusual behavior.

8.
J Chem Phys ; 130(23): 234906, 2009 Jun 21.
Article in English | MEDLINE | ID: mdl-19548755

ABSTRACT

We propose simple design concepts for molecular rotors driven by Brownian motion and external photochemical switching. Unidirectionality and efficiency of the motion is measured by explicit simulations. Two different molecular scaffolds are shown to yield viable molecular rotors when decorated with suitable substituents.

SELECTION OF CITATIONS
SEARCH DETAIL
...