Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clim Dyn ; 57(3-4): 1009-1021, 2021.
Article in English | MEDLINE | ID: mdl-34720434

ABSTRACT

Summer precipitation totals in the Alpine Region do not exhibit a systematic trend over the last 120 years. However, we find significant low frequency periodicity of interannual variability which occurs in synchronization with a dominant two-phase state of the atmospheric circulation over the Alps. Enhanced meridional flow increases precipitation variability through positive soil moisture precipitation feedbacks on the regional scale, whereas enhanced zonal flow results in less variability through constant moisture flow from the Atlantic and suppressed feedbacks with the land surface. The dominant state of the atmospheric circulation over the Alps in these periods appears to be steered by zonal sea surface temperature gradients in the mid-latitude North Atlantic. The strength and the location of the westerlies in the mid-latitude Atlantic play an important role in the physical mechanisms linking atmosphere and oceanic temperature gradients and the meridional/zonal circulation characteristics.

2.
Int J Climatol ; 39(11): 4514-4530, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31598034

ABSTRACT

Despite the importance of snow in alpine regions, little attention has been given to the homogenization of snow depth time series. Snow depth time series are generally characterized by high spatial heterogeneity and low correlation among the time series, and the homogenization thereof is therefore challenging. In this work, we present a comparison between two homogenization methods for mean seasonal snow depth time series available for Austria: the standard normal homogeneity test (SNHT) and HOMOP. The results of the two methods are generally in good agreement for high elevation sites. For low elevation sites, HOMOP often identifies suspicious breakpoints (that cannot be confirmed by metadata and only occur in relation to seasons with particularly low mean snow depth), while the SNHT classifies the time series as homogeneous. We therefore suggest applying both methods to verify the reliability of the detected breakpoints. The number of computed anomalies is more sensitive to inhomogeneities than trend analysis performed with the Mann-Kendall test. Nevertheless, the homogenized dataset shows an increased number of stations with negative snow depth trends and characterized by consecutive negative anomalies starting from the late 1980s and early 1990s, which was in agreement with the observations available for several stations in the Alps. In summary, homogenization of snow depth data is possible, relevant and should be carried out prior to performing climatological analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...