Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(6): e2317756121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38300868

ABSTRACT

Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring FGFR2 alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures. In this study, aided by analysis of protein dynamics, we designed a selective, covalent FGFR2 inhibitor. In a key initial step, analysis of long-timescale molecular dynamics simulations of the FGFR1 and FGFR2 kinase domains allowed us to identify differential motion in their P-loops, which are located adjacent to the orthosteric site. Using this insight, we were able to design orthosteric binders that selectively and covalently engage the P-loop of FGFR2. Our drug discovery efforts culminated in the development of lirafugratinib (RLY-4008), a covalent inhibitor of FGFR2 that shows substantial selectivity over FGFR1 (~250-fold) and FGFR4 (~5,000-fold) in vitro, causes tumor regression in multiple FGFR2-altered human xenograft models, and was recently demonstrated to be efficacious in the clinic at doses that do not induce clinically significant hyperphosphatemia or diarrhea.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Hyperphosphatemia , Humans , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/chemistry , Bile Ducts, Intrahepatic/metabolism , Diarrhea , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry
2.
Cancer Discov ; 13(9): 2012-2031, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37270847

ABSTRACT

Oncogenic activation of fibroblast growth factor receptor 2 (FGFR2) drives multiple cancers and represents a broad therapeutic opportunity, yet selective targeting of FGFR2 has not been achieved. Although the clinical efficacy of pan-FGFR inhibitors (pan-FGFRi) validates FGFR2 driver status in FGFR2 fusion-positive intrahepatic cholangiocarcinoma, their benefit is limited by incomplete target coverage due to FGFR1- and FGFR4-mediated toxicities (hyperphosphatemia and diarrhea, respectively) and the emergence of FGFR2 resistance mutations. RLY-4008 is a highly selective, irreversible FGFR2 inhibitor designed to overcome these limitations. In vitro, RLY-4008 demonstrates >250- and >5,000-fold selectivity over FGFR1 and FGFR4, respectively, and targets primary alterations and resistance mutations. In vivo, RLY-4008 induces regression in multiple xenograft models-including models with FGFR2 resistance mutations that drive clinical progression on current pan-FGFRi-while sparing FGFR1 and FGFR4. In early clinical testing, RLY-4008 induced responses without clinically significant off-isoform FGFR toxicities, confirming the broad therapeutic potential of selective FGFR2 targeting. SIGNIFICANCE: Patients with FGFR2-driven cancers derive limited benefit from pan-FGFRi due to multiple FGFR1-4-mediated toxicities and acquired FGFR2 resistance mutations. RLY-4008 is a highly selective FGFR2 inhibitor that targets primary alterations and resistance mutations and induces tumor regression while sparing other FGFRs, suggesting it may have broad therapeutic potential. See related commentary by Tripathi et al., p. 1964. This article is featured in Selected Articles from This Issue, p. 1949.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Receptor, Fibroblast Growth Factor, Type 2/genetics , Mutation , Cholangiocarcinoma/genetics , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic/metabolism , Protein Kinase Inhibitors/therapeutic use
3.
Drug Discov Today ; 21(8): 1272-83, 2016 08.
Article in English | MEDLINE | ID: mdl-27179986

ABSTRACT

Modest success rates in fragment-based lead generation (FBLG) projects at AstraZeneca (AZ) prompted operational changes to improve performance. In this review, we summarize these changes, emphasizing the construction and composition of the AZ fragment library, screening practices and working model. We describe the profiles of the screening method for specific fragment subsets and statistically assess our ability to follow up on fragment hits through near-neighbor selection. Performance analysis of our second-generation fragment library (FL2) in screening campaigns illustrates the complementary nature of flat and 3D fragments in exploring protein-binding pockets and highlights our ability to deliver fragment hits using multiple screening techniques for various target classes. The new model has had profound impact on the successful delivery of lead series to drug discovery projects.


Subject(s)
Drug Discovery/methods , Drug Industry , Small Molecule Libraries
4.
Angew Chem Int Ed Engl ; 52(47): 12256-67, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24151256

ABSTRACT

The methyl group is one of the most commonly occurring carbon fragments in small-molecule drugs. This simplest alkyl fragment appears in more than 67 % of the top-selling drugs of 2011 and can modulate both the biological and physical properties of a molecule. This Review focuses on so-called magic methyl effects on binding potency, where the seemingly mundane change of CH to CMe improves the IC50  value of a drug candidate more than 100-fold. This discussion is followed by a survey of recent advances in synthetic chemistry that allow the direct methylation of C(sp(2) )H and C(sp(3) )H bonds. It is our hope that the relevance of the meager methyl group to drug discovery as presented herein will inspire reports on new CH methylation reactions.


Subject(s)
Drug Discovery , Carbon/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Methylation , Methyltransferases/metabolism , Quantum Theory , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
5.
J Nat Prod ; 76(3): 450-4, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-23346866

ABSTRACT

Photooxidation of A2E may be involved in diseases of the macula, and antioxidants could serve as therapeutic agents for these diseases. Inhibitors of A2E photooxidation were prepared by Mannich reaction of the antioxidant quercetin. These compounds contain water-solubilizing amine groups, and several were more potent inhibitors of A2E photooxidation than quercetin.


Subject(s)
Antioxidants/chemical synthesis , Macular Degeneration/prevention & control , Pyridinium Compounds/chemical synthesis , Retinoids/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Light , Lipofuscin/physiology , Molecular Structure , Pigment Epithelium of Eye/drug effects , Pyridinium Compounds/antagonists & inhibitors , Pyridinium Compounds/chemistry , Pyridinium Compounds/metabolism , Pyridinium Compounds/pharmacology , Quercetin/pharmacology , Retinoids/antagonists & inhibitors , Retinoids/chemistry , Retinoids/metabolism , Retinoids/pharmacology
6.
Org Lett ; 14(10): 2610-3, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22540677

ABSTRACT

Direct, one-pot, operationally simple, and highly enantioselective iso-Pictet-Spengler reactions are reported. The reactions involve the condensation of either (1H-indol-4-yl)methanamine or 2-(1H-Indol-1-yl)ethanamine with a variety of α-ketoamides, followed by the addition of a simple and commercially available chiral silicon Lewis acid. These reactions are the first asymmetric examples of these cyclization modes and provide access to 3,3-disubstituted-1,3,4,5-tetrahydropyrrolo[4,3,2-de]isoquinolines and 1,1-disubstituted-1,2,3,4-tetrahydropyrazino[1,2-a]indoles, respectively, two relatively underexplored indole-based core structure motifs in medicinal chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...