Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(15): 20688-20693, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510157

ABSTRACT

We demonstrate the first lasing emission of a thermo-electrically cooled terahertz quantum cascade laser (THz QCL). A high temperature three-well THz QCL emitting at 3.8 THz is mounted to a novel five-stage thermoelectric cooler reaching a temperature difference of ΔT = 124 K. The temperature and time-dependent laser performance is investigated and shows a peak pulse power of 4.4 mW and a peak average output power of 100 µW for steady-state operation.

2.
ACS Photonics ; 5(11): 4687-4693, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-31037249

ABSTRACT

Terahertz quantum cascade lasers (QCLs) are excellent coherent light sources, but are still limited to an operating temperature below 200 K. To tackle this, we analyze the influence of the barrier height for the identical three-well terahertz QCL layer sequence by comparing different aluminum concentrations (x = 0.12-0.24) in the GaAs/Al x Ga1-x As material system, and then we present an optimized structure based on these findings. Electron injection and extraction mechanisms as well as LO-phonon depopulation processes play crucial roles in the efficient operation of these lasers and are investigated in this study. Experimental results of the barrier height study show the highest operating temperature of 186.5 K for the structure with 21% aluminum barriers, with a record k B T max/ℏω value of 1.36 for a three-well active region design. An optimized heterostructure with 21% aluminum concentration and reduced cavity waveguide losses is designed and enables a record operating temperature of 196 K for a 3.8 THz QCL.

3.
ACS Photonics ; 4(4): 957-962, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28470028

ABSTRACT

We report on high-power terahertz quantum cascade lasers based on low effective electron mass InGaAs/InAlAs semiconductor heterostructures with excellent reproducibility. Growth-related asymmetries in the form of interface roughness and dopant migration play a crucial role in this material system. These bias polarity dependent phenomena are studied using a nominally symmetric active region resulting in a preferential electron transport in the growth direction. A structure based on a three-well optical phonon depletion scheme was optimized for this bias direction. Depending on the sheet doping density, the performance of this structure shows a trade-off between high maximum operating temperature and high output power. While the highest operating temperature of 155 K is observed for a moderate sheet doping density of 2 × 1010 cm-2, the highest peak output power of 151 mW is found for 7.3 × 1010 cm-2. Furthermore, by abutting a hyperhemispherical GaAs lens to a device with the highest doping level a record output power of 587 mW is achieved for double-metal waveguide structures.

4.
Opt Express ; 24(22): 25462-25470, 2016 Oct 31.
Article in English | MEDLINE | ID: mdl-27828484

ABSTRACT

We demonstrate a convenient and fast method to measure the spectrally resolved far-fields of multimode terahertz quantum cascade lasers by combining a microbolometer focal plane array with an FTIR spectrometer. Far-fields of fundamental TM0 and higher lateral order TM1 modes of multimode Fabry-Pérot type lasers have been distinguished, which very well fit to the results obtained by a 3D finite-element simulation. Furthermore, multimode random laser cavities have been investigated, analyzing the contribution of each single laser mode to the total far-field. The presented method is thus an important tool to gain in-depth knowledge of the emission properties of multimode laser cavities at terahertz frequencies, which become increasingly important for future sensing applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...